Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Cell Death Differ ; 18(9): 1457-69, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21637292

ABSTRACT

Analyses of neutrophil death mechanisms have revealed many similarities with other cell types; however, a few important molecular features make these cells unique executors of cell death mechanisms. For instance, in order to fight invading pathogens, neutrophils possess a potent machinery to produce reactive oxygen species (ROS), the phagocyte nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. Evidence is emerging that these ROS are crucial in the execution of most neutrophil cell death mechanisms. Likewise, neutrophils exhibit many diverse granules that are packed with cytotoxic mediators. Of those, cathepsins were recently shown to activate pro-apoptotic B-cell lymphoma-2 (Bcl-2) family members and caspases, thus acting on apoptosis regulators. Moreover, neutrophils have few mitochondria, which hardly participate in ATP synthesis, as neutrophils gain energy from glycolysis. In spite of relatively low levels of cytochrome c in these cells, the mitochondrial death pathway is functional. In addition to these pecularities defining neutrophil death pathways, neutrophils are terminally differentiated cells, hence they do not divide but undergo apoptosis shortly after maturation. The initial trigger of this spontaneous apoptosis remains to be determined, but may result from low transcription and translation activities in mature neutrophils. Due to the unique biological characteristics of neutrophils, pharmacological intervention of inflammation has revealed unexpected and sometimes disappointing results when neutrophils were among the prime target cells during therapy. In this study, we review the current and emerging models of neutrophil cell death mechanisms with a focus on neutrophil peculiarities.


Subject(s)
Cell Death/physiology , Neutrophils/pathology , Apoptosis/physiology , Apoptosis Regulatory Proteins/physiology , Caspases/physiology , Humans , MAP Kinase Signaling System , Mitochondria/physiology , Neutrophils/physiology , Proto-Oncogene Proteins c-bcl-2/physiology , Reactive Oxygen Species/metabolism , Transcriptional Activation
2.
Biochem Soc Trans ; 35(Pt 2): 199-203, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17371237

ABSTRACT

Class IA PI3Ks (phosphoinositide 3-kinases) consist of a p110 catalytic subunit bound to one of five regulatory subunits, known as p85s. Under unstimulated conditions, p85 stabilizes the labile p110 protein, while inhibiting its catalytic activity. Recruitment of the p85-p110 complex to receptors and adaptor proteins via the p85 SH2 (Src homology 2) domains alleviates this inhibition, leading to PI3K activation and production of PIP(3) (phosphatidylinositol 3,4,5-trisphosphate). Four independent p85 KO (knockout) mouse lines have been generated. Remarkably, PI3K signalling in insulin-sensitive tissues of these mice is increased. The existence of p110-free p85 in insulin-responsive cells has been invoked to explain this observation. Such a monomeric p85 would compete with heterodimeric p85-p110 for pTyr (phosphotyrosine) recruitment, and thus repress PI3K activity. Reduction in the pool of p110-free p85 in p85 KO mice was thought to allow recruitment of functional heterodimeric p85-p110, leading to increased PI3K activity. However, recent results indicate that monomeric p85, like p110, is unstable in cells. Moreover, overexpressed free p85 does not necessarily compete with heterodimeric p85-p110 for receptor binding. Using a variety of approaches, we have observed a 1:1 ratio between the p85 and p110 subunits in murine cell lines and primary tissues. Alternative models to explain the increase in PI3K signalling in insulin-responsive cells of p85 KO mice, based on possible effects of p85 deletion on phosphatases acting on PIP(3), are discussed.


Subject(s)
Phosphatidylinositol 3-Kinases/metabolism , Protein Subunits/metabolism , Animals , Enzyme Activation , Mice , Mice, Knockout , Models, Biological , Phosphatidylinositol 3-Kinases/deficiency , Phosphatidylinositol 3-Kinases/genetics , Protein Subunits/deficiency , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...