Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Arthroplast Today ; 11: 196-204, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34746345

ABSTRACT

The fracturing of a hip prosthesis stem at its neck, in the absence of a trauma, is an extremely rare but serious adverse event. The patient in our case was young, active, and tall, thereby putting high mechanical loads on the prosthesis. Radiographs of the initial procedure and blood and synovium analysis showed no abnormalities. Analysis of the stem revealed niobium-rich precipitates, that is, alloy artifacts, at the introducer stud hole. The mechanically vulnerable location of the introducer stud hole, combined with alloy artifacts at that location and high mechanical stress, ultimately led to failure of the prosthesis. As younger and heavier patients will demand hip arthroplasty in the future, simple stem design adaptations should be considered to prevent stem fractures at the introducer stud hole.

2.
Sci Rep ; 10(1): 12041, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32694580

ABSTRACT

High-performance locally resonant metamaterials represent the next frontier in materials technology due to their extraordinary properties obtained through materials design, enabling a variety of potential applications. The most exceptional feature of locally resonant metamaterials is the subwavelength size of their unit cells, which allows to overcome the limits in wave focusing, imaging and sound/vibration isolation. To respond to the fast evolution of these artificial materials and the increasing need for advanced and exceptional properties, the emergence of a new mechanism for wave mitigation and control consisting in a nonlinear interaction between propagating and evanescent waves has recently been theoretically demonstrated. Here, we present the experimental proof of this phenomenon: the appearance of a subharmonic transmission attenuation zone due to energy exchange induced by autoparametric resonance. These results pave the path to a new generation of nonlinear locally resonant metamaterials.

3.
Materials (Basel) ; 12(22)2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31717339

ABSTRACT

Dual phase (DP) steels provide good strength and ductility properties. Nevertheless, their forming capability is limited due to the damage characteristics of their constituting microstructural phases and interfaces. In this work, a specific type of interface is analysed, i.e., prior austenite grain boundaries (PAGBs). In the literature, prior austenite grain boundary fracture has been reported as an important damage mechanism of DP-steels. The influence of the morphology of phase boundaries near the PAGB and the role of the martensite substructure in the vicinity of a PAGB on damage initiation is analysed. The experimentally observed preferred sites of crack nucleation along the PAGB are assessed and clarified. A finite strain rate dependent crystal plasticity model accounting for the anisotropic elasto-plasticity of martensite (and also ferrite) was applied to an idealized volume element approximating a typical small-scale PAGB microstructure. The boundary value problem is solved using a fast Fourier transform (FFT) based spectral solver. The role of crystallography and geometrical features within the volume element is studied using simulations. Results are discussed considering possibly dominant regimes of elasticity and plasticity.

4.
Ultramicroscopy ; 187: 144-163, 2018 04.
Article in English | MEDLINE | ID: mdl-29499524

ABSTRACT

High resolution scanning electron microscopy (HR-SEM) is nowadays very popular for different applications in different fields. However, SEM images may exhibit a considerable amount of imaging artifacts, which induce significant errors if the images are used to measure geometrical or kinematical fields. This error is most pronounced in case of full field deformation measurements, for instance by digital image correlation (DIC). One family of SEM artifacts result from positioning errors of the scanning electron beam, creating artifactual shifts in the images perpendicular to the scan lines (scan line shifts). This leads to localized distortions in the displacement fields obtained from such images, by DIC. This type of artifacts is corrected here using global DIC (GDIC). A novel GDIC framework, considering the nonlinear influence of artifacts in the imaging system, is introduced for this purpose. Using an enriched regularization in the global DIC scheme, based on an error function, the scan line shift artifacts are captured and eliminated. The proposed methodology is demonstrated in virtually generated and deformed images as well as real SEM micrographs. The results confirm the proper detection and elimination of this type of SEM artifacts.

5.
Materials (Basel) ; 11(2)2018 Feb 02.
Article in English | MEDLINE | ID: mdl-29393908

ABSTRACT

Metal-elastomer interfacial systems, often encountered in stretchable electronics, demonstrate remarkably high interface fracture toughness values. Evidently, a large gap exists between the rather small adhesion energy levels at the microscopic scale ('intrinsic adhesion') and the large measured macroscopic work-of-separation. This energy gap is closed here by unravelling the underlying dissipative mechanisms through a systematic numerical/experimental multi-scale approach. This self-containing contribution collects and reviews previously published results and addresses the remaining open questions by providing new and independent results obtained from an alternative experimental set-up. In particular, the experimental studies on Cu-PDMS (Poly(dimethylsiloxane)) samples conclusively reveal the essential role of fibrillation mechanisms at the micro-meter scale during the metal-elastomer delamination process. The micro-scale numerical analyses on single and multiple fibrils show that the dynamic release of the stored elastic energy by multiple fibril fracture, including the interaction with the adjacent deforming bulk PDMS and its highly nonlinear behaviour, provide a mechanistic understanding of the high work-of-separation. An experimentally validated quantitative relation between the macroscopic work-of-separation and peel front height is established from the simulation results. Finally, it is shown that a micro-mechanically motivated shape of the traction-separation law in cohesive zone models is essential to describe the delamination process in fibrillating metal-elastomer systems in a physically meaningful way.

6.
Comput Mech ; 62(2): 151-169, 2018.
Article in English | MEDLINE | ID: mdl-30971852

ABSTRACT

Micro-structural analyses are an important tool to understand material behavior on a macroscopic scale. The analysis of a microstructure is usually computationally very demanding and there are several reduced order modeling techniques available in literature to limit the computational costs of repetitive analyses of a single representative volume element. These techniques to speed up the integration at the micro-scale can be roughly divided into two classes; methods interpolating the integrand and cubature methods. The empirical interpolation method (high-performance reduced order modeling) and the empirical cubature method are assessed in terms of their accuracy in approximating the full-order result. A micro-structural volume element is therefore considered, subjected to four load-cases, including cyclic and path-dependent loading. The differences in approximating the micro- and macroscopic quantities of interest are highlighted, e.g. micro-fluctuations and stresses. Algorithmic speed-ups for both methods with respect to the full-order micro-structural model are quantified. The pros and cons of both classes are thereby clearly identified.

7.
Micromachines (Basel) ; 8(9)2017 Sep 13.
Article in English | MEDLINE | ID: mdl-30400467

ABSTRACT

The exciting field of stretchable electronics (SE) promises numerous novel applications, particularly in-body and medical diagnostics devices. However, future advanced SE miniature devices will require high-density, extremely stretchable interconnects with micron-scale footprints, which calls for proven standardized (complementary metal-oxide semiconductor (CMOS)-type) process recipes using bulk integrated circuit (IC) microfabrication tools and fine-pitch photolithography patterning. Here, we address this combined challenge of microfabrication with extreme stretchability for high-density SE devices by introducing CMOS-enabled, free-standing, miniaturized interconnect structures that fully exploit their 3D kinematic freedom through an interplay of buckling, torsion, and bending to maximize stretchability. Integration with standard CMOS-type batch processing is assured by utilizing the Flex-to-Rigid (F2R) post-processing technology to make the back-end-of-line interconnect structures free-standing, thus enabling the routine microfabrication of highly-stretchable interconnects. The performance and reproducibility of these free-standing structures is promising: an elastic stretch beyond 2000% and ultimate (plastic) stretch beyond 3000%, with <0.3% resistance change, and >10 million cycles at 1000% stretch with <1% resistance change. This generic technology provides a new route to exciting highly-stretchable miniature devices.

8.
Biomech Model Mechanobiol ; 14(5): 931-65, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25716305

ABSTRACT

The human brain is the continuous subject of extensive investigation aimed at understanding its behavior and function. Despite a clear evidence that mechanical factors play an important role in regulating brain activity, current research efforts focus mainly on the biochemical or electrophysiological activity of the brain. Here, we show that classical mechanical concepts including deformations, stretch, strain, strain rate, pressure, and stress play a crucial role in modulating both brain form and brain function. This opinion piece synthesizes expertise in applied mathematics, solid and fluid mechanics, biomechanics, experimentation, material sciences, neuropathology, and neurosurgery to address today's open questions at the forefront of neuromechanics. We critically review the current literature and discuss challenges related to neurodevelopment, cerebral edema, lissencephaly, polymicrogyria, hydrocephaly, craniectomy, spinal cord injury, tumor growth, traumatic brain injury, and shaken baby syndrome. The multi-disciplinary analysis of these various phenomena and pathologies presents new opportunities and suggests that mechanical modeling is a central tool to bridge the scales by synthesizing information from the molecular via the cellular and tissue all the way to the organ level.


Subject(s)
Brain Diseases/physiopathology , Brain/physiopathology , Mechanotransduction, Cellular , Models, Neurological , Neurons , Animals , Brain/pathology , Brain Diseases/pathology , Compressive Strength , Computer Simulation , Elastic Modulus , Humans , Intracranial Pressure , Stress, Mechanical , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...