Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 12778, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32728158

ABSTRACT

Non-alcoholic Fatty Liver Disease (NAFLD) is the most common form of liver disease and is associated with metabolic dysregulation. Although G protein-coupled receptor 84 (GPR84) has been associated with inflammation, its role in metabolic regulation remains elusive. The aim of our study was to evaluate the potential of PBI-4547 for the treatment of NAFLD and to validate the role of its main target receptor, GPR84. We report that PBI-4547 is a fatty acid mimetic, acting concomitantly as a GPR84 antagonist and GPR40/GPR120 agonist. In a mouse model of diet-induced obesity, PBI-4547 treatment improved metabolic dysregulation, reduced hepatic steatosis, ballooning and NAFLD score. PBI-4547 stimulated fatty acid oxidation and induced gene expression of mitochondrial uncoupling proteins in the liver. Liver metabolomics revealed that PBI-4547 improved metabolic dysregulation induced by a high-fat diet regimen. In Gpr84-/- mice, PBI-4547 treatment failed to improve various key NAFLD-associated parameters, as was observed in wildtype littermates. Taken together, these results highlight a detrimental role for the GPR84 receptor in the context of meta-inflammation and suggest that GPR84 antagonism via PBI-4547 may reflect a novel treatment approach for NAFLD and its related complications.


Subject(s)
Acetates/pharmacology , Fatty Acids/pharmacology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Binding, Competitive , Biosensing Techniques , Cholesterol/metabolism , Disease Models, Animal , Disease Progression , Drug Discovery , Female , Glucose/metabolism , Glucose Tolerance Test , HEK293 Cells , Homeostasis , Humans , Ligands , Magnetic Resonance Spectroscopy , Male , Metabolomics , Mice , Mitochondria/metabolism , Obesity/metabolism , Oxygen/metabolism , Plasmids/metabolism , Protein Binding
2.
ChemistryOpen ; 7(9): 737-749, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30258746

ABSTRACT

Low-molecular-weight synthetic molecules 1 with the general 2-(fluorophenylamino)-4,6-disubstituted 1,3,5-triazine structure and showing anti-inflammatory and anticancer activities were explored. Structure-activity relationship studies demonstrated the importance of the aminopentyl chain, the 3- or 4-fluorophenylaniline component, and the presence of at least one substituent, such as a tyramine moiety, attached directly to the triazine ring as essential for good activity. These compounds, represented by leads 4-{2-[4-(5-Aminopentylamino)-6-(3-fluorophenylamino)-1,3,5-triazin-2-ylamino]ethyl}phenol (6) and 4-{2-[4-(5-Aminopentylamino)-6-(4-fluorophenylamino)-1,3,5-triazin-2-ylamino]ethyl}phenol (10), displayed moderate and significant in vitro and in vivo dual activities, respectively, and address the molecular link between inflammation and cancer. Compound 10 demonstrated significant antitumor efficacy upon administration by the oral and intravenous routes in several animal models. This class of triazine compounds is new, safe, and nontoxic and offers a novel approach to the treatment of inflammation and cancer.

3.
J Pharmacol Exp Ther ; 367(1): 71-81, 2018 10.
Article in English | MEDLINE | ID: mdl-30093459

ABSTRACT

Hepatic fibrosis is a major cause of morbidity and mortality for which there is currently no effective therapy. We previously showed that 2-(3-pentylphenyl)acetic acid (PBI-4050) is a dual G protein-coupled receptor GPR40 agonist/GPR84 antagonist that exerts antifibrotic, anti-inflammatory, and antiproliferative action. We evaluated PBI-4050 for the treatment of liver fibrosis in vivo and elucidated its mechanism of action on human hepatic stellate cells (HSCs). The antifibrotic effect of PBI-4050 was evaluated in carbon tetrachloride (CCl4)- and bile duct ligation-induced liver fibrosis rodent models. Treatment with PBI-4050 suppressed CCl4-induced serum aspartate aminotransferase levels, inflammatory marker nitric oxide synthase, epithelial to mesenchymal transition transcription factor Snail, and multiple profibrotic factors. PBI-4050 also decreased GPR84 mRNA expression in CCl4-induced injury, while restoring peroxisome proliferator-activated receptor γ (PPARγ) to the control level. Collagen deposition and α-smooth muscle actin (α-SMA) protein levels were also attenuated by PBI-4050 treatment in the bile duct ligation rat model. Transforming growth factor-ß-activated primary HSCs were used to examine the effect of PBI-4050 and its mechanism of action in vitro. PBI-4050 inhibited HSC proliferation by arresting cells in the G0/G1 cycle phase. Subsequent analysis demonstrated that PBI-4050 signals through a reduction of intracellular ATP levels, activation of liver kinase B1 (LKB1) and AMP-activated protein kinase (AMPK), and blockade of mammalian target of rapamycin (mTOR), resulting in reduced protein and mRNA levels of α-SMA and connective tissue growth factor and restored PPARγ mRNA expression. Our findings suggest that PBI-4050 may exert antifibrotic activity in the liver through a novel mechanism of action involving modulation of intracellular ATP levels and the LKB1/AMPK/mTOR pathway in stellate cells, and PBI-4050 may be a promising agent for treating liver fibrosis.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , Anti-Inflammatory Agents/pharmacology , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/drug therapy , Protein Serine-Threonine Kinases/metabolism , TOR Serine-Threonine Kinases/metabolism , AMP-Activated Protein Kinase Kinases , Animals , Carbon Tetrachloride/pharmacology , Gene Expression Regulation/drug effects , Hepatic Stellate Cells/drug effects , Humans , Liver/drug effects , Liver/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis, Experimental/chemically induced , Liver Cirrhosis, Experimental/drug therapy , Liver Cirrhosis, Experimental/metabolism , Male , Mice , Mice, Inbred C57BL , PPAR gamma/metabolism , RNA, Messenger/metabolism , Rats , Rats, Wistar , Signal Transduction/drug effects
4.
Am J Pathol ; 188(5): 1132-1148, 2018 05.
Article in English | MEDLINE | ID: mdl-29454750

ABSTRACT

Numerous clinical conditions can lead to organ fibrosis and functional failure. There is a great need for therapies that could effectively target pathophysiological pathways involved in fibrosis. GPR40 and GPR84 are G protein-coupled receptors with free fatty acid ligands and are associated with metabolic and inflammatory disorders. Although GPR40 and GPR84 are involved in diverse physiological processes, no evidence has demonstrated the relevance of GPR40 and GPR84 in fibrosis pathways. Using PBI-4050 (3-pentylbenzeneacetic acid sodium salt), a synthetic analog of a medium-chain fatty acid that displays agonist and antagonist ligand affinity toward GPR40 and GPR84, respectively, we uncovered an antifibrotic pathway involving these receptors. In experiments using Gpr40- and Gpr84-knockout mice in models of kidney fibrosis (unilateral ureteral obstruction, long-term post-acute ischemic injury, and adenine-induced chronic kidney disease), we found that GPR40 is protective and GPR84 is deleterious in these diseases. Moreover, through binding to GPR40 and GPR84, PBI-4050 significantly attenuated fibrosis in many injury contexts, as evidenced by the antifibrotic activity observed in kidney, liver, heart, lung, pancreas, and skin fibrosis models. Therefore, GPR40 and GPR84 may represent promising molecular targets in fibrosis pathways. We conclude that PBI-4050 is a first-in-class compound that may be effective for managing inflammatory and fibrosis-related diseases.


Subject(s)
Kidney Diseases/pathology , Receptors, G-Protein-Coupled/metabolism , Renal Insufficiency, Chronic/pathology , Animals , Fibrosis/genetics , Fibrosis/metabolism , Fibrosis/pathology , Kidney Diseases/genetics , Kidney Diseases/metabolism , Mice , Mice, Knockout , Receptors, G-Protein-Coupled/genetics , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism
5.
Mol Cancer Ther ; 3(11): 1375-84, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15542776

ABSTRACT

A novel series of 2-amino-4-(3-bromo-4,5-dimethoxy-phenyl)-3-cyano-4H-chromenes was identified as potent apoptosis inducers through a cell-based high throughput screening assay. Six compounds from this series, MX-58151, MX-58276, MX-76747, MX-116214, MX-116407, and MX-126303, were further profiled and shown to have potent in vitro cytotoxic activity toward proliferating cells only and to interact with tubulin at the colchicine-binding site, thereby inhibiting tubulin polymerization and leading to cell cycle arrest and apoptosis. Furthermore, these compounds were shown to disrupt newly formed capillary tubes in vitro at low nanomolar concentrations. These data suggested that the compounds might have vascular targeting activity. In this study, we have evaluated the ability of these compounds to disrupt tumor vasculature and to induce tumor necrosis. We investigated the pharmacokinetic and toxicity profiles of all six compounds and examined their ability to induce tumor necrosis. We next examined the antitumor efficacy of a subset of compounds in three different human solid tumor xenografts. In the human lung tumor xenograft (Calu-6), MX-116407 was highly active, producing tumor regressions in all 10 animals. Moreover, MX-116407 significantly enhanced the antitumor activity of cisplatin, resulting in 40% tumor-free animals at time of sacrifice. Our results identify MX-116407 as the lead candidate and strongly support its continued development as a novel anticancer agent for human use.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Antineoplastic Agents/pharmacology , Benzopyrans/pharmacology , Drug Screening Assays, Antitumor , Neoplasms/blood supply , Neoplasms/pathology , Neovascularization, Pathologic/drug therapy , Amination , Angiogenesis Inhibitors/blood , Angiogenesis Inhibitors/chemistry , Angiogenesis Inhibitors/pharmacokinetics , Animals , Antineoplastic Agents/blood , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Benzopyrans/blood , Benzopyrans/chemistry , Benzopyrans/pharmacokinetics , Bromine/chemistry , Cell Line, Tumor , Female , Humans , Male , Mice , Necrosis , Neoplasm Transplantation , Neoplasms/drug therapy , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...