Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Appl Clin Med Phys ; 17(6): 60-68, 2016 11 08.
Article in English | MEDLINE | ID: mdl-27929481

ABSTRACT

Cardiac irradiation increases the risk of coronary artery disease in patients with left-sided breast cancer. Techniques exist to reduce cardiac irradiation, but the optimum technique depends on individual patient anatomy and physiology. We investigated the correlation of delta heart volume in field (dHVIF) and sternal excursion with dose sparing in heart and left anterior descending artery (LAD) to develop quantitative predictive models for expected dose to heart and LAD. A treatment planning study was performed on 97 left-breast cancer patients who underwent whole breast radiotherapy (prescription dose = 50 Gy) under deep inspiratory breath hold (DIBH). Two CT datasets, free breathing (FB) and DIBH, were utilized for treatment planning and for determination of the internal anatomy-based DIBH amplitude. The mean heart and LAD dose were compared between FB and DIBH plans and dose to the heart and LAD as a function of dHVIF and sternal excursion were determined. The [Average (STD); Range] mean heart doses from free breathing and DIBH are [120.5(65.2); 28.9 ~ 393.8] cGy and [67.5(25.1); 19.7 ~ 145.6] cGy, respectively. The mean LAD doses from free breathing and DIBH are [571.0(582.2); 42.2 ~ 2332.2] cGy and [185.9(127.0); 41.2 ~ 898.4] cGy, respectively. The mean dose reductions with DIBH are [53.1(50.6); -15.4 ~ 295.1] cGy for the heart and [385.1(513.4); -0.6 ~ 2105.8] cGy for LAD. Percent mean dose reductions to the heart and LAD with DIBH are 44% (p < 0.0001) and 67% (p < 0.0001), respectively, compared to FB. The dHVIF mean dose reduction correlation is 8.1 cGy/cc for the heart and 81.6 cGy/cc for LAD (with linear trend and y intercept: 26.0 cGy for the heart, 109.1 cGy for LAD). DIBH amplitude using sternal position was [1.3(.48); .38 ~ 2.5] cm. The DIBH amplitude mean dose reduction correlation is 14 cGy/cm for the heart and 212cGy/cm for LAD (with linear trend with y intercept: 35.6 cGy for the heart, 102.4 cGy for LAD). The strong correlation of dose sparing to the heart and LAD with dHVIF and sternal excursion suggests that mean dose sparing to heart and LAD can be predicted with either dHVIF or sternal excursion equally well. The metrics proposed could be utilized to allow providers to determine the relative dosimetric benefits of different heart-sparing techniques as early as time of consultation.


Subject(s)
Breast Neoplasms/radiotherapy , Heart/radiation effects , Radiotherapy Planning, Computer-Assisted/methods , Sternum , Breath Holding , Female , Humans , Organs at Risk/radiation effects , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated
2.
Med Dosim ; 38(2): 190-5, 2013.
Article in English | MEDLINE | ID: mdl-23453454

ABSTRACT

Patients undergoing radiation for left-sided breast cancer have increased rates of coronary artery disease. Free-breathing intensity-modulated radiation therapy (FB-IMRT) and 3-dimensional conformal deep inspiratory-breath hold (3D-DIBH) reduce cardiac irradiation. The purpose of this study is to compare the dose to organs at risk in FB-IMRT vs 3D-DIBH for patients with left-sided breast cancer. Ten patients with left-sided breast cancer had 2 computed tomography scans: free breathing and voluntary DIBH. Optimization of the IMRT plan was performed on the free-breathing scan using 6 noncoplanar tangential beams. The 3D-DIBH plan was optimized on the DIBH scan and used standard tangents. Mean volumes of the heart, the left anterior descending coronary artery (LAD), the total lung, and the right breast receiving 5% to 95% (5% increments) of the prescription dose were calculated. Mean volumes of the heart and the LAD were lower (p<0.05) in 3D-DIBH for volumes receiving 5% to 80% of the prescription dose for the heart and 5% for the LAD. Mean dose to the LAD and heart were lower in 3D-DIBH (p≤0.01). Mean volumes of the total lung were lower in FB-IMRT for dose levels 20% to 75% (p<0.05), but mean dose was not different. Mean volumes of the right breast were not different for any dose; however, mean dose was lower for 3D-DIBH (p = 0.04). 3D-DIBH is an alternative approach to FB-IMRT that provides a clinically equivalent treatment for patients with left-sided breast cancer while sparing organs at risk with increased ease of implementation.


Subject(s)
Artifacts , Breast Neoplasms/radiotherapy , Patient Positioning/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Respiratory Mechanics , Tomography, X-Ray Computed/methods , Breast Neoplasms/diagnostic imaging , Female , Humans , Imaging, Three-Dimensional/methods , Organs at Risk/diagnostic imaging , Organs at Risk/radiation effects , Radiometry/methods , Radiotherapy Dosage , Radiotherapy, Image-Guided/methods , Reproducibility of Results , Sensitivity and Specificity , Treatment Outcome
3.
Technol Cancer Res Treat ; 10(4): 307-15, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21728387

ABSTRACT

To quantify the dosimetric gains from non-coplanar helical tomotherapy (HT) arcs for stereotactic body radiation therapy (SBRT) of lung cancer, we created oblique helical arcs by rotating patient's CT images. Ten, 20 and 30 degrees of yaws were introduced in the treatment planning for a patient with a hypothetical lung tumor at the upper, middle and lower portion of the right lung, and the upper and middle left lung. The planning target volume (PTV) was 43 cm(3). 60 Gy was prescribed to the PTV. Dose to organs at risk (OARs), which included the lungs, heart, spinal cord and chest wall, was optimized using a 2.5 cm jaw, 0.287 pitch and modulation factor of 2.5. Composite plans were generated by dose summation of the resultant plans. These plans were evaluated for its conformity index (R(x)) and percentile volume of lung receiving radiation dose of x Gy (V(x)). Conformity index was defined by the ratio of x percent isodose volume and PTV. The results show that combination of non-coplanar arcs reduced R(50) by 4.5%, R(20) by 26% and R(10) by 30% on average. Non-coplanar arcs did not affect V(20) but reduced V(10) and V(5) by 10% and 24% respectively. Composite of the non-coplanar arcs also reduced maximum dose to the spinal cord by 20-39%. Volume of chest wall receiving higher than 30 Gy was reduced by 48% on average. Heart dose reduction was dependent on the location of the PTV and the choice of non-coplanar orientations. Therefore we conclude that non-coplanar HT arcs significantly improve critical organ sparing in lung SBRT without changing the PTV dose coverage.


Subject(s)
Adenocarcinoma/radiotherapy , Lung Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Computer-Assisted/methods , Adenocarcinoma of Lung , Cone-Beam Computed Tomography/methods , Humans , Radiographic Image Interpretation, Computer-Assisted , Radiotherapy, Intensity-Modulated/methods
SELECTION OF CITATIONS
SEARCH DETAIL