Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 127(12): 4134-5, 2005 Mar 30.
Article in English | MEDLINE | ID: mdl-15783171

ABSTRACT

Alkane complexes of the type Cp'Re(CO)2(alkane) (Cp' = cyclopentadienyl or (isopropyl)cyclopentadienyl; alkane = isotopomers of n-pentane and cyclopentane) have been characterized using NMR spectroscopy following photolysis of Cp'Re(CO)3 in the appropriate alkane at 163-193 K. In the case of n-pentane, three different complexes are observed corresponding to binding of the three different types of carbon in this alkane. ROESY NMR experiments indicate that these isomeric complexes are slowly interconverting intramolecularly at 173 K. The order of the energetically preferred site of coordination is methylene (C2) approximately central methylene (C3) > methyl (C1) but with a spread of <0.2 kcal mol-1. Isotopic perturbation of resonance (IPR) experiments, conducted on several isotopomers of (i-PrCp)Re(CO)2(1-pentane), showed a large shielding of the 1H NMR chemical shift of the proton in a bound CHD2 moiety (delta -3.62) and CH2D (delta -2.64) compared with that of a bound CH3 moiety (delta -1.99). Likewise, the value of 1JCH for the coordinated methyl group of isotopomers of (i-PrCp)Re(CO)2(1-pentane) reduces in the order CH3 > CH2D > CHD2. This suggests that the alkane coordinates in an eta2-C,H fashion with a rapid exchange of bound hydrogen or deuterium within a methyl or methylene group, and that binding of a hydrogen atom is preferred over a deuterium by an amount of 0.23 +/- 0.03 kcal mol-1.

2.
Proc Natl Acad Sci U S A ; 102(6): 1853-8, 2005 Feb 08.
Article in English | MEDLINE | ID: mdl-15677722

ABSTRACT

Photolysis of Re(iPrCp)(CO)2(PF3) in liquid or supercritical Xe yields two new compounds [Re(iPrCp)(CO)2Xe and Re(iPrCp)(CO)(PF3)Xe]. Re(iPrCp)(CO)(PF3)Xe has been characterized by NMR and IR spectroscopies. The compound is an organometallic Xe complex that has been characterized by using NMR spectroscopy and is shown to be longer-lived than other organometallic Xe complexes by IR spectroscopy. 19F, 31P, and 129Xe chemical shifts have been determined. The 129Xe chemical shift of Re(iPrCp)(CO)(PF3)Xe, delta -6,179, is a Xe shift that is significantly shielded, on the order of 1,000 ppm, with respect to free Xe. The coupling constants between coordinated 129Xe and both the 19F and 31P nuclei present have been extracted, confirming the identity of the compound. Observed line widths give a lower limit to the lifetime of the coordinated Xe of 27 ms at 163 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...