Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Annu Rev Plant Biol ; 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38382904

ABSTRACT

A major bottleneck in the crop improvement pipeline is our ability to phenotype crops quickly and efficiently. Image-based, high-throughput phenotyping has a number of advantages because it is nondestructive and reduces human labor, but a new challenge arises in extracting meaningful information from large quantities of image data. Deep learning, a type of artificial intelligence, is an approach used to analyze image data and make predictions on unseen images that ultimately reduces the need for human input in computation. Here, we review the basics of deep learning, assessment of deep learning success, examples of applications of deep learning in plant phenomics, best practices, and open challenges. Expected final online publication date for the Annual Review of Plant Biology, Volume 75 is May 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

2.
Plant J ; 117(6): 1676-1701, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37483133

ABSTRACT

The demand for agricultural production is becoming more challenging as climate change increases global temperature and the frequency of extreme weather events. This study examines the phenotypic variation of 149 accessions of Brachypodium distachyon under drought, heat, and the combination of stresses. Heat alone causes the largest amounts of tissue damage while the combination of stresses causes the largest decrease in biomass compared to other treatments. Notably, Bd21-0, the reference line for B. distachyon, did not have robust growth under stress conditions, especially the heat and combined drought and heat treatments. The climate of origin was significantly associated with B. distachyon responses to the assessed stress conditions. Additionally, a GWAS found loci associated with changes in plant height and the amount of damaged tissue under stress. Some of these SNPs were closely located to genes known to be involved in responses to abiotic stresses and point to potential causative loci in plant stress response. However, SNPs found to be significantly associated with a response to heat or drought individually are not also significantly associated with the combination of stresses. This, with the phenotypic data, suggests that the effects of these abiotic stresses are not simply additive, and the responses to the combined stresses differ from drought and heat alone.


Subject(s)
Brachypodium , Brachypodium/metabolism , Biodiversity , Temperature , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism
4.
New Phytol ; 238(6): 2427-2439, 2023 06.
Article in English | MEDLINE | ID: mdl-36918471

ABSTRACT

Plant responses to abiotic environmental challenges are known to have lasting effects on the plant beyond the initial stress exposure. Some of these lasting effects are transgenerational, affecting the next generation. The plant response to elevated carbon dioxide (CO2 ) levels has been well studied. However, these investigations are typically limited to plants grown for a single generation in a high CO2 environment while transgenerational studies are rare. We aimed to determine transgenerational growth responses in plants after exposure to high CO2 by investigating the direct progeny when returned to baseline CO2 levels. We found that both the flowering plant Arabidopsis thaliana and seedless nonvascular plant Physcomitrium patens continue to display accelerated growth rates in the progeny of plants exposed to high CO2 . We used the model species Arabidopsis to dissect the molecular mechanism and found that DNA methylation pathways are necessary for heritability of this growth response. More specifically, the pathway of RNA-directed DNA methylation is required to initiate methylation and the proteins CMT2 and CMT3 are needed for the transgenerational propagation of this DNA methylation to the progeny plants. Together, these two DNA methylation pathways establish and then maintain a cellular memory to high CO2 exposure.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA Methylation/genetics , Carbon Dioxide/pharmacology , Carbon Dioxide/metabolism , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant
5.
Plant Methods ; 18(1): 65, 2022 May 18.
Article in English | MEDLINE | ID: mdl-35585546

ABSTRACT

BACKGROUND: Quinoa is an increasingly popular seed crop frequently studied for its tolerance to various abiotic stresses as well as its susceptibility to heat. Estimations of quinoa pollen viability through staining methods have resulted in conflicting results. A more effective alternative to stains is to estimate pollen viability through in vitro germination. Here we report a method for in vitro quinoa pollen germination that could be used to understand the impact of various stresses on quinoa fertility and therefore seed yield or to identify male-sterile lines for breeding. RESULTS: A semi-automated method to count germinating pollen was developed in PlantCV, which can be widely used by the community. Pollen collected on day 4 after first anthesis at zeitgeber time 5 was optimum for pollen germination with an average germination of 68% for accession QQ74 (PI 614886). The optimal length of pollen incubation was found to be 48 h, because it maximizes germination rates while minimizing contamination. The pollen germination medium's pH, boric acid, and sucrose concentrations were optimized. The highest germination rates were obtained with 16% sucrose, 0.03% boric acid, 0.007% calcium nitrate, and pH 5.5. This medium was tested on quinoa accessions QQ74, and cherry vanilla with 68%, and 64% germination efficiencies, respectively. CONCLUSIONS: We provide an in vitro pollen germination method for quinoa with average germination rates of 64 and 68% on the two accessions tested. This method is a valuable tool to estimate pollen viability in quinoa, and to test how stress affects quinoa fertility. We also developed an image analysis tool to semi-automate the process of counting germinating pollen. Quinoa produces many new flowers during most of its panicle development period, leading to significant variation in pollen maturity and viability between different flowers of the same panicle. Therefore, collecting pollen at 4 days after first anthesis is very important to collect more uniformly developed pollen and to obtain high germination rates.

6.
Plant Biotechnol J ; 20(9): 1716-1729, 2022 09.
Article in English | MEDLINE | ID: mdl-35560779

ABSTRACT

Tef is a staple food and a valuable cash crop for millions of people in Ethiopia. Lodging is a major limitation to tef production, and for decades, the development of lodging resistant varieties proved difficult with conventional breeding approaches. We used CRISPR/Cas9 to introduce knockout mutations in the tef orthologue of the rice SEMIDWARF-1 (SD-1) gene to confer semidwarfism and ultimately lodging resistance. High frequency recovery of transgenic and SD-1 edited tef lines was achieved in two tef cultivars by Agrobacterium-mediated delivery into young leaf explants of gene editing reagents along with transformation and regeneration enhancing morphogenic genes, BABY BOOM (BBM) and WUSCHEL2 (WUS2). All of the 23 lines analyzed by next-generation sequencing had at least two or more alleles of SD-1 mutated. Of these, 83% had tetra-allelic frameshift mutations in the SD-1 gene in primary tef regenerants, which were inherited in subsequent generations. Phenotypic data generated on T1 and T2 generations revealed that the sd-1 lines have reduced culm and internode lengths with no reduction in either panicle or peduncle lengths. These characteristics are comparable with rice sd-1 plants. Measurements of lodging, in greenhouse-grown plants, showed that sd-1 lines have significantly higher resistance to lodging at the heading stage compared with the controls. This is the first demonstration of the feasibility of high frequency genetic transformation and CRISPR/Cas9-mediated genome editing in this highly valuable but neglected crop. The findings reported here highlight the potential of genome editing for the improvement of lodging resistance and other important traits in tef.


Subject(s)
Eragrostis , Genes, Plant , Alleles , CRISPR-Cas Systems , Eragrostis/genetics , Gene Editing , Mutation , Plant Breeding , Plants, Genetically Modified/genetics
7.
Plant Direct ; 6(2): e384, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35146239

ABSTRACT

Quinoa is a popular seed crop, often consumed for its high nutritional quality. We studied how heat stress in the roots or the shoots of quinoa plants affected the concentrations of 20 elements (aluminum, arsenic, boron, calcium, cadmium, cobalt, copper, iron, potassium, magnesium, manganese, molybdenum, sodium, nickel, phosphorous, rubidium, sulfur, selenium, strontium, and zinc) in quinoa seed. Elemental concentrations in quinoa seed were significantly changed after an 11-day heat treatment during anthesis. The type of panicle (main, secondary, and tertiary) sampled and the type of heat treatment (root only, shoot only, or whole plants) significantly affected elemental profiles in quinoa seed. Plants were also divided into five sections from top to bottom to assess the effect of panicle position on seed elemental profiles. Plant section had an effect on the concentrations of arsenic, iron, and sodium under control conditions and on copper with heat treatment. Overall, the time of panicle development in relation to the time of heat exposure had the largest effect on seed elemental concentrations. Interestingly, the quinoa plants were exposed to heat only during anthesis of the main panicle, but the elemental concentrations of seeds produced after heat treatment ended were still significantly changed, indicating that heat stress has long-lasting effects on quinoa plants. These findings demonstrate how the nutritional quality of quinoa seeds can be changed significantly even by relatively short heat spells.

8.
New Phytol ; 230(1): 354-371, 2021 04.
Article in English | MEDLINE | ID: mdl-33280122

ABSTRACT

Allopolyploidisation merges evolutionarily distinct parental genomes (subgenomes) into a single nucleus. A frequent observation is that one subgenome is 'dominant' over the other subgenome, often being more highly expressed. Here, we 'replayed the evolutionary tape' with six isogenic resynthesised Brassica napus allopolyploid lines and investigated subgenome dominance patterns over the first 10 generations postpolyploidisation. We found that the same subgenome was consistently more dominantly expressed in all lines and generations and that >70% of biased gene pairs showed the same dominance patterns across all lines and an in silico hybrid of the parents. Gene network analyses indicated an enrichment for network interactions and several biological functions for the Brassica oleracea subgenome biased pairs, but no enrichment was identified for Brassica rapa subgenome biased pairs. Furthermore, DNA methylation differences between subgenomes mirrored the observed gene expression bias towards the dominant subgenome in all lines and generations. Many of these differences in gene expression and methylation were also found when comparing the progenitor genomes, suggesting that subgenome dominance is partly related to parental genome differences rather than just a byproduct of allopolyploidisation. These findings demonstrate that 'replaying the evolutionary tape' in an allopolyploid results in largely repeatable and predictable subgenome expression dominance patterns.


Subject(s)
Brassica napus , Brassica rapa , Biological Evolution , Brassica napus/genetics , Brassica rapa/genetics , Genome, Plant/genetics , Polyploidy
9.
Plant J ; 102(5): 1058-1073, 2020 06.
Article in English | MEDLINE | ID: mdl-31971639

ABSTRACT

Increasing global temperatures and a growing world population create the need to develop crop varieties that provide higher yields in warmer climates. There is growing interest in expanding quinoa cultivation, because of the ability of quinoa to produce nutritious grain in poor soils, with little water and at high salinity. The main limitation to expanding quinoa cultivation, however, is the susceptibility of quinoa to temperatures above approximately 32°C. This study investigates the phenotypes, genes and mechanisms that may affect quinoa seed yield at high temperatures. Using a differential heating system where only roots or only shoots were heated, quinoa yield losses were attributed to shoot heating. Plants with heated shoots lost 60-85% yield as compared with control plants. Yield losses were the result of lower fruit production, which lowered the number of seeds produced per plant. Furthermore, plants with heated shoots had delayed maturity and greater non-reproductive shoot biomass, whereas plants with both heated roots and heated shoots produced higher yields from the panicles that had escaped the heat, compared with the control. This suggests that quinoa uses a type of avoidance strategy to survive heat. Gene expression analysis identified transcription factors differentially expressed in plants with heated shoots and low yield that had been previously associated with flower development and flower opening. Interestingly, in plants with heated shoots, flowers stayed closed during the day while the control flowers were open. Although a closed flower may protect the floral structures, this could also cause yield losses by limiting pollen dispersal, which is necessary to produce fruit in the mostly female flowers of quinoa.


Subject(s)
Chenopodium quinoa/metabolism , Fruit/metabolism , Plant Shoots/metabolism , RNA-Seq
10.
Plant Direct ; 3(1): e00104, 2019 Jan.
Article in English | MEDLINE | ID: mdl-31245751

ABSTRACT

Increasing the tolerance of maize seedlings to low-temperature episodes could mitigate the effects of increasing climate variability on yield. To aid progress toward this goal, we established a growth chamber-based system for subjecting seedlings of 40 maize inbred genotypes to a defined, temporary cold stress while collecting digital profile images over a 9-daytime course. Image analysis performed with PlantCV software quantified shoot height, shoot area, 14 other morphological traits, and necrosis identified by color analysis. Hierarchical clustering of changes in growth rates of morphological traits and quantification of leaf necrosis over two time intervals resulted in three clusters of genotypes, which are characterized by unique responses to cold stress. For any given genotype, the set of traits with similar growth rates is unique. However, the patterns among traits are different between genotypes. Cold sensitivity was not correlated with the latitude where the inbred varieties were released suggesting potential further improvement for this trait. This work will serve as the basis for future experiments investigating the genetic basis of recovery to cold stress in maize seedlings.

11.
Plant Physiol ; 178(2): 699-715, 2018 10.
Article in English | MEDLINE | ID: mdl-30093527

ABSTRACT

Plant growth and water use are interrelated processes influenced by genetically controlled morphological and biochemical characteristics. Improving plant water use efficiency (WUE) to sustain growth in different environments is an important breeding objective that can improve crop yields and enhance agricultural sustainability. However, genetic improvement of WUE using traditional methods has proven difficult due to the low throughput and environmental heterogeneity of field settings. To overcome these limitations, this study utilizes a high-throughput phenotyping platform to quantify plant size and water use of an interspecific Setaria italica × Setaria viridis recombinant inbred line population at daily intervals in both well-watered and water-limited conditions. Our findings indicate that measurements of plant size and water use are correlated strongly in this system; therefore, a linear modeling approach was used to partition this relationship into predicted values of plant size given water use and deviations from this relationship at the genotype level. The resulting traits describing plant size, water use, and WUE all were heritable and responsive to soil water availability, allowing for a genetic dissection of the components of plant WUE under different watering treatments. Linkage mapping identified major loci underlying two different pleiotropic components of WUE. This study indicates that alleles controlling WUE derived from both wild and domesticated accessions can be utilized to predictably modulate trait values given a specified precipitation regime in the model C4 genus Setaria.


Subject(s)
Multifactorial Inheritance , Setaria Plant/genetics , Water/physiology , Alleles , Chromosome Mapping , Genotype , Phenotype , Setaria Plant/growth & development , Setaria Plant/physiology
12.
Appl Plant Sci ; 6(3): e1031, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29732261

ABSTRACT

PREMISE OF THE STUDY: Image-based phenomics is a powerful approach to capture and quantify plant diversity. However, commercial platforms that make consistent image acquisition easy are often cost-prohibitive. To make high-throughput phenotyping methods more accessible, low-cost microcomputers and cameras can be used to acquire plant image data. METHODS AND RESULTS: We used low-cost Raspberry Pi computers and cameras to manage and capture plant image data. Detailed here are three different applications of Raspberry Pi-controlled imaging platforms for seed and shoot imaging. Images obtained from each platform were suitable for extracting quantifiable plant traits (e.g., shape, area, height, color) en masse using open-source image processing software such as PlantCV. CONCLUSIONS: This protocol describes three low-cost platforms for image acquisition that are useful for quantifying plant diversity. When coupled with open-source image processing tools, these imaging platforms provide viable low-cost solutions for incorporating high-throughput phenomics into a wide range of research programs.

13.
Plant Biotechnol J ; 16(6): 1186-1200, 2018 06.
Article in English | MEDLINE | ID: mdl-29193665

ABSTRACT

Storage roots of cassava (Manihot esculenta Crantz), a major subsistence crop of sub-Saharan Africa, are calorie rich but deficient in essential micronutrients, including provitamin A ß-carotene. In this study, ß-carotene concentrations in cassava storage roots were enhanced by co-expression of transgenes for deoxy-d-xylulose-5-phosphate synthase (DXS) and bacterial phytoene synthase (crtB), mediated by the patatin-type 1 promoter. Storage roots harvested from field-grown plants accumulated carotenoids to ≤50 µg/g DW, 15- to 20-fold increases relative to roots from nontransgenic plants. Approximately 85%-90% of these carotenoids accumulated as all-trans-ß-carotene, the most nutritionally efficacious carotenoid. ß-Carotene-accumulating storage roots displayed delayed onset of postharvest physiological deterioration, a major constraint limiting utilization of cassava products. Large metabolite changes were detected in ß-carotene-enhanced storage roots. Most significantly, an inverse correlation was observed between ß-carotene and dry matter content, with reductions of 50%-60% of dry matter content in the highest carotenoid-accumulating storage roots of different cultivars. Further analysis confirmed a concomitant reduction in starch content and increased levels of total fatty acids, triacylglycerols, soluble sugars and abscisic acid. Potato engineered to co-express DXS and crtB displayed a similar correlation between ß-carotene accumulation, reduced dry matter and starch content and elevated oil and soluble sugars in tubers. Transcriptome analyses revealed a reduced expression of genes involved in starch biosynthesis including ADP-glucose pyrophosphorylase genes in transgenic, carotene-accumulating cassava roots relative to nontransgenic roots. These findings highlight unintended metabolic consequences of provitamin A biofortification of starch-rich organs and point to strategies for redirecting metabolic flux to restore starch production.


Subject(s)
Biofortification , Carbohydrate Metabolism , Carotenoids/metabolism , Manihot/chemistry , Plant Roots/chemistry , Abscisic Acid/metabolism , Food Storage , Geranylgeranyl-Diphosphate Geranylgeranyltransferase/genetics , Manihot/genetics , Manihot/metabolism , Plants, Genetically Modified , Solanum tuberosum/chemistry , Starch/biosynthesis , Transferases/genetics
15.
PeerJ ; 5: e4088, 2017.
Article in English | MEDLINE | ID: mdl-29209576

ABSTRACT

Systems for collecting image data in conjunction with computer vision techniques are a powerful tool for increasing the temporal resolution at which plant phenotypes can be measured non-destructively. Computational tools that are flexible and extendable are needed to address the diversity of plant phenotyping problems. We previously described the Plant Computer Vision (PlantCV) software package, which is an image processing toolkit for plant phenotyping analysis. The goal of the PlantCV project is to develop a set of modular, reusable, and repurposable tools for plant image analysis that are open-source and community-developed. Here we present the details and rationale for major developments in the second major release of PlantCV. In addition to overall improvements in the organization of the PlantCV project, new functionality includes a set of new image processing and normalization tools, support for analyzing images that include multiple plants, leaf segmentation, landmark identification tools for morphometrics, and modules for machine learning.

16.
Elife ; 62017 08 18.
Article in English | MEDLINE | ID: mdl-28826479

ABSTRACT

The dynamics of local climates make development of agricultural strategies challenging. Yield improvement has progressed slowly, especially in drought-prone regions where annual crop production suffers from episodic aridity. Underlying drought responses are circadian and diel control of gene expression that regulate daily variations in metabolic and physiological pathways. To identify transcriptomic changes that occur in the crop Brassica rapa during initial perception of drought, we applied a co-expression network approach to associate rhythmic gene expression changes with physiological responses. Coupled analysis of transcriptome and physiological parameters over a two-day time course in control and drought-stressed plants provided temporal resolution necessary for correlation of network modules with dynamic changes in stomatal conductance, photosynthetic rate, and photosystem II efficiency. This approach enabled the identification of drought-responsive genes based on their differential rhythmic expression profiles in well-watered versus droughted networks and provided new insights into the dynamic physiological changes that occur during drought.


Subject(s)
Brassica rapa/genetics , Brassica rapa/physiology , Droughts , Gene Expression Profiling , Gene Expression Regulation, Plant , Stress, Physiological
17.
Front Plant Sci ; 8: 900, 2017.
Article in English | MEDLINE | ID: mdl-28659934

ABSTRACT

The geometries and topologies of leaves, flowers, roots, shoots, and their arrangements have fascinated plant biologists and mathematicians alike. As such, plant morphology is inherently mathematical in that it describes plant form and architecture with geometrical and topological techniques. Gaining an understanding of how to modify plant morphology, through molecular biology and breeding, aided by a mathematical perspective, is critical to improving agriculture, and the monitoring of ecosystems is vital to modeling a future with fewer natural resources. In this white paper, we begin with an overview in quantifying the form of plants and mathematical models of patterning in plants. We then explore the fundamental challenges that remain unanswered concerning plant morphology, from the barriers preventing the prediction of phenotype from genotype to modeling the movement of leaves in air streams. We end with a discussion concerning the education of plant morphology synthesizing biological and mathematical approaches and ways to facilitate research advances through outreach, cross-disciplinary training, and open science. Unleashing the potential of geometric and topological approaches in the plant sciences promises to transform our understanding of both plants and mathematics.

19.
Plant Direct ; 1(4): e00018, 2017 Oct.
Article in English | MEDLINE | ID: mdl-31245666

ABSTRACT

Plant responses to the environment are shaped by external stimuli and internal signaling pathways. In both the model plant Arabidopsis thaliana (Arabidopsis) and crop species, circadian clock factors are critical for growth, flowering, and circadian rhythms. Outside of Arabidopsis, however, little is known about the molecular function of clock gene products. Therefore, we sought to compare the function of Brachypodium distachyon (Brachypodium) and Setaria viridis (Setaria) orthologs of EARLY FLOWERING 3, a key clock gene in Arabidopsis. To identify both cycling genes and putative ELF3 functional orthologs in Setaria, a circadian RNA-seq dataset and online query tool (Diel Explorer) were generated to explore expression profiles of Setaria genes under circadian conditions. The function of ELF3 orthologs from Arabidopsis, Brachypodium, and Setaria was tested for complementation of an elf3 mutation in Arabidopsis. We find that both monocot orthologs were capable of rescuing hypocotyl elongation, flowering time, and arrhythmic clock phenotypes. Using affinity purification and mass spectrometry, our data indicate that BdELF3 and SvELF3 could be integrated into similar complexes in vivo as AtELF3. Thus, we find that, despite 180 million years of separation, BdELF3 and SvELF3 can functionally complement loss of ELF3 at the molecular and physiological level.

20.
Plant J ; 84(4): 682-93, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26369909

ABSTRACT

The natural range of Arabidopsis thaliana (Arabidopsis) encompasses geographical regions that have greatly differing local climates, including harshness of winter temperatures. A question thus raised is whether differences in freezing tolerance might contribute to local adaptation in Arabidopsis. Consistent with this possibility is that Arabidopsis accessions differ in freezing tolerance and that those collected from colder northern latitudes are generally more tolerant to freezing than those collected from warmer southern latitudes. Moreover, recent studies with Arabidopsis genotypes collected from sites in Sweden (SW) and Italy (IT) have established that the two accessions are locally adapted, that the SW ecotype is more tolerant of freezing than the IT ecotype, and that genetic differences between the two ecotypes that condition local adaptation and freezing tolerance map to a region that includes the C-repeat binding factor (CBF) locus. The CBF locus includes three genes - CBF1, CBF2 and CBF3 - that are induced by low temperature and encode transcription factors that regulate a group of more than 100 genes, the CBF regulon, which impart freezing tolerance. Here we show that cold induction of most CBF regulon genes is lower in IT plants compared with SW plants, and that this is due to the IT CBF2 gene encoding a non-functional CBF2 protein. The non-functional IT CBF2 protein also contributes to the lower freezing tolerance of the IT plants compared with the SW plants. Taken together, studies on the SW and IT ecotypes provide evidence that natural variation in the CBF pathway has contributed to adaptive evolution in these Arabidopsis populations.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Cold Temperature , Genetic Variation , Trans-Activators/genetics , Transcription Factors/genetics , Adaptation, Physiological/genetics , Amino Acid Sequence , Arabidopsis/classification , Ecotype , Gene Expression Profiling , Gene Expression Regulation, Plant , Geography , Italy , Molecular Sequence Data , Plants, Genetically Modified , Quantitative Trait Loci/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Signal Transduction/genetics , Species Specificity , Sweden
SELECTION OF CITATIONS
SEARCH DETAIL
...