Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Res Sq ; 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36865166

ABSTRACT

Glycogen Storage Disease type 1b (GSD1b) is a rare disease manifesting as hypoglycemia, recurrent infections and neutropenia, resulting from deleterious mutations in the SLC37A4 gene encoding the glucose-6-phosphate transporter. The susceptibility to infections is thought to be attributed not only to the neutrophil defect, though extensive immunophenotyping characterization is currently missing. Here we apply a systems immunology approach utilizing Cytometry by Time Of Flight (CyTOF) to map the peripheral immune landscape of 6 GSD1b patients. When compared to control subjects, those with GSD1b had a significant reduction in anti-inflammatory macrophages, CD16+ macrophages, and Natural Killer cells. Additionally, there was a preference towards a central versus an effector memory phenotype in multiple T cell populations, which may suggest that these changes stem from an inability of activated immune cell populations to undergo the appropriate switch to glycolytic metabolism in the hypoglycemic conditions associated with GSD1b. Furthermore, we identified a global reduction of CD123, CD14, CCR4, CD24 and CD11b across several populations and a multi-cluster upregulation of CXCR3, hinting at a potential role of impaired immune cell trafficking in the context of GSD1b. Taken together, our data indicates that that the immune impairment observed in GSD1b patients extends far beyond neutropenia and encompasses innate and adaptive compartments, which may provide novel insights into the pathogenesis of this disorder.

2.
J Inflamm Res ; 15: 1873-1887, 2022.
Article in English | MEDLINE | ID: mdl-35342295

ABSTRACT

Trillions of microorganisms exist in the human intestine as commensals and contribute to homeostasis through their interactions with the immune system. In this review, we use previous evidence from published papers to elucidate the involvement of commensal-specific T cells (CSTCs) in regulating intestinal inflammatory responses. CSTCs are generated centrally in the thymus or peripherally at mucosal interfaces and present as CD4+ or CD8+ T cells. Bacteria, fungi, and even viruses act commensally with humans, warranting consideration of CSTCs in this critical relationship. Dysregulation of this immunological balance can result in both intestinal inflammation or damaging autoimmune responses elsewhere in the body. Given the relative novelty of CSTCs in the literature, we aim to introduce the importance of their role in maintaining immune homeostasis at barrier sites such as the intestine.

SELECTION OF CITATIONS
SEARCH DETAIL
...