Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antonie Van Leeuwenhoek ; 116(12): 1285-1294, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37751033

ABSTRACT

Methylorubrum extorquens is an important model methylotroph and has enormous potential for the development of C1-based microbial cell factories. During strain construction, regulated promoters with a low background expression level are important genetic tools for expression of potentially toxic genes. Here we present an accordingly optimised promoter, which can be used for that purpose. During construction and testing of terpene production strains harbouring a recombinant mevalonate pathway, strong growth defects were observed which made strain development impossible. After isolation and characterisation of suppressor mutants, we discovered a variant of the cumate-inducible promoter PQ2148 used in this approach. Deletion of 28 nucleotides resulted in an extremely low background expression level, but also reduced the maximal expression strength to about 30% of the original promoter. This tightly repressed promoter version is a powerful module for controlled expression of potentially toxic genes in M. extorquens.


Subject(s)
Methylobacterium extorquens , Promoter Regions, Genetic , Methylobacterium extorquens/genetics , Methylobacterium extorquens/metabolism , Methanol/metabolism
2.
Microbiologyopen ; 11(5): e1325, 2022 10.
Article in English | MEDLINE | ID: mdl-36314759

ABSTRACT

Plasmids are one of the most important genetic tools for basic research and biotechnology, as they enable rapid genetic manipulation. Here we present a novel pBBR1-based plasmid for Methylorubrum extorquens, a model methylotroph that is used for the development of C1-based microbial cell factories. To develop a vector with compatibility to the so far mainly used pCM plasmid system, we transferred the pBBR1-based plasmid pMiS1, which showed an extremely low transformation rate and caused a strong growth defect. Isolation of a suppressor mutant with improved growth led to the isolation of the variant pMis1_1B. Its higher transformation rate and less pronounced growth defect phenotype could be shown to be the result of a mutation in the promotor region of the rep gene. Moreover, cotransformation of pMis1_1B and pCM160 was possible, but the resulting transformants showed stronger growth defects in comparison with a single pMis1_1B transformant. Surprisingly, cotransformants carrying pCM160 and a pMis1_1B derivative containing a mCherry reporter construct showed higher fluorescence levels than strains containing only the pMis1_1B-based reporter plasmids or a corresponding pCM160 derivative. Relative plasmid copy number determination experiments confirmed our hypothesis of an increased copy number of pMis1_1B in the strain carrying both plasmids. Despite the slight metabolic burden caused by pMis1_1B, the plasmid strongly expands the genetic toolbox for M. extorquens.


Subject(s)
Plasmids , Plasmids/genetics
3.
Appl Microbiol Biotechnol ; 106(19-20): 6713-6731, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36104545

ABSTRACT

The methylotrophic bacterium Methylorubrum extorquens AM1 has the potential to become a platform organism for methanol-driven biotechnology. Its ethylmalonyl-CoA pathway (EMCP) is essential during growth on C1 compounds and harbors several CoA-activated dicarboxylic acids. Those acids could serve as precursor molecules for various polymers. In the past, two dicarboxylic acid products, namely mesaconic acid and 2-methylsuccinic acid, were successfully produced with heterologous thioesterase YciA from Escherichia coli, but the yield was reduced by product reuptake. In our study, we conducted extensive research on the uptake mechanism of those dicarboxylic acid products. By using 2,2-difluorosuccinic acid as a selection agent, we isolated a dicarboxylic acid import mutant. Analysis of the genome of this strain revealed a deletion in gene dctA2, which probably encodes an acid transporter. By testing additional single, double, and triple deletions, we were able to rule out the involvement of the two other DctA transporter homologs and the ketoglutarate transporter KgtP. Uptake of 2-methylsuccinic acid was significantly reduced in dctA2 mutants, while the uptake of mesaconic acid was completely prevented. Moreover, we demonstrated M. extorquens-based synthesis of citramalic acid and a further 1.4-fold increase in product yield using a transport-deficient strain. This work represents an important step towards the development of robust M. extorquens AM1 production strains for dicarboxylic acids. KEY POINTS: • 2,2-Difluorosuccinic acid is used to select for dicarboxylic acid uptake mutations. • Deletion of dctA2 leads to reduction of dicarboxylic acid uptake. • Transporter-deficient strains show improved production of citramalic acid.


Subject(s)
Methanol , Methylobacterium extorquens , Dicarboxylic Acids/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Fumarates , Malates , Maleates , Methanol/metabolism , Methylobacterium extorquens/genetics , Polymers/metabolism , Succinates
SELECTION OF CITATIONS
SEARCH DETAIL
...