Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 549(7673): 488-491, 2017 09 27.
Article in English | MEDLINE | ID: mdl-28959966

ABSTRACT

The majority of the accreting supermassive black holes in the Universe are obscured by large columns of gas and dust. The location and evolution of this obscuring material have been the subject of intense research in the past decades, and are still debated. A decrease in the covering factor of the circumnuclear material with increasing accretion rates has been found by studies across the electromagnetic spectrum. The origin of this trend may be driven by the increase in the inner radius of the obscuring material with incident luminosity, which arises from the sublimation of dust; by the gravitational potential of the black hole; by radiative feedback; or by the interplay between outflows and inflows. However, the lack of a large, unbiased and complete sample of accreting black holes, with reliable information on gas column density, luminosity and mass, has left the main physical mechanism that regulates obscuration unclear. Here we report a systematic multi-wavelength survey of hard-X-ray-selected black holes that reveals that radiative feedback on dusty gas is the main physical mechanism that regulates the distribution of the circumnuclear material. Our results imply that the bulk of the obscuring dust and gas is located within a few to tens of parsecs of the accreting supermassive black hole (within the sphere of influence of the black hole), and that it can be swept away even at low radiative output rates. The main physical driver of the differences between obscured and unobscured accreting black holes is therefore their mass-normalized accretion rate.

2.
Sci Am ; 316(4): 38-45, 2017 Mar 14.
Article in English | MEDLINE | ID: mdl-28296834
4.
Nature ; 521(7552): 328-31, 2015 May 21.
Article in English | MEDLINE | ID: mdl-25993962

ABSTRACT

Type Ia supernovae are destructive explosions of carbon-oxygen white dwarfs. Although they are used empirically to measure cosmological distances, the nature of their progenitors remains mysterious. One of the leading progenitor models, called the single degenerate channel, hypothesizes that a white dwarf accretes matter from a companion star and the resulting increase in its central pressure and temperature ignites thermonuclear explosion. Here we report observations with the Swift Space Telescope of strong but declining ultraviolet emission from a type Ia supernova within four days of its explosion. This emission is consistent with theoretical expectations of collision between material ejected by the supernova and a companion star, and therefore provides evidence that some type Ia supernovae arise from the single degenerate channel.

5.
Philos Trans A Math Phys Eng Sci ; 371(1992): 20120270, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-23630376

ABSTRACT

We present an overview of high-energy transients in astrophysics, highlighting important advances over the past 50 years. We begin with early discoveries of γ-ray transients, and then delve into physical details associated with a variety of phenomena. We discuss some of the unexpected transients found by Fermi and Swift, many of which are not easily classifiable or in some way challenge conventional wisdom. These objects are important insofar as they underscore the necessity of future, more detailed studies.

6.
Science ; 337(6097): 932-6, 2012 Aug 24.
Article in English | MEDLINE | ID: mdl-22923573

ABSTRACT

Gamma-ray bursts (GRBs) are bright flashes of gamma rays coming from the cosmos. They occur roughly once per day, typically last for tens of seconds, and are the most luminous events in the universe. More than three decades after their discovery, and after pioneering advances from space and ground experiments, they still remain mysterious. The launch of the Swift and Fermi satellites in 2004 and 2008 brought in a trove of qualitatively new data. In this Review, we survey the interplay between these recent observations and the theoretical models of the prompt GRB emission and the subsequent afterglow.

7.
Science ; 337(6094): 554-6, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22767898

ABSTRACT

Relativistic jets are streams of plasma moving at appreciable fractions of the speed of light. They have been observed from stellar-mass black holes (~3 to 20 solar masses, M(⊙)) as well as supermassive black holes (~10(6) to 10(9) M(⊙)) found in the centers of most galaxies. Jets should also be produced by intermediate-mass black holes (~10(2) to 10(5) M(⊙)), although evidence for this third class of black hole has, until recently, been weak. We report the detection of transient radio emission at the location of the intermediate-mass black hole candidate ESO 243-49 HLX-1, which is consistent with a discrete jet ejection event. These observations also allow us to refine the mass estimate of the black hole to be between ~9 × 10(3) M(⊙) and ~9 × 10(4) M(⊙).

8.
Philos Trans A Math Phys Eng Sci ; 365(1854): 1119-28, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17293335

ABSTRACT

Since its launch on 20 November 2004, the Swift mission has been detecting approximately 100 gamma-ray bursts (GRBs) each year, and immediately (within approx. 90s) starting simultaneous X-ray and UV/optical observations of the afterglow. It has already collected an impressive database, including prompt emission to higher sensitivities than BATSE, uniform monitoring of afterglows and a rapid follow-up by other observatories notified through the GCN. Advances in our understanding of short GRBs have been spectacular. The detection of X-ray afterglows has led to accurate localizations and the conclusion that short GRBs can occur in non-star-forming galaxies or regions, whereas long GRBs are strongly concentrated within the star-forming regions. This is consistent with the NS merger model. Swift has greatly increased the redshift range of GRB detection. The highest redshift GRBs, at z approximately 5-6, are approaching the era of reionization. Ground-based deep optical spectroscopy of high redshift bursts is giving metallicity measurements and other information on the source environment to a much greater distance than other techniques. The localization of GRB 060218 to a nearby galaxy, and the association with SN 2006aj, added a valuable member to the class of GRBs with detected supernova.

9.
Sci Am ; 287(6): 84-91, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12469650
SELECTION OF CITATIONS
SEARCH DETAIL
...