Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pathology ; 54(6): 779-783, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35738943

ABSTRACT

Enteroviruses (EV) commonly cause hand, foot and mouth disease (HFMD), and can also cause potentially fatal neurological and systemic complications. In our laboratory, sequencing 5' untranslated region (UTR) of the viral genome has been the routine method of genotyping EVs. During a recent localised outbreak of aseptic meningitis, sequencing the 5'UTR identified the causative virus as EV-A71, which did not fit with the clinical syndrome or illness severity. When genotyped using a different target gene, VP1, the result was different. This led us to evaluate the accuracy of the two different target genome regions and compare them against whole genome sequencing (WGS). We aimed to optimise the algorithm for detection and characterisation of EVs in the diagnostic laboratory. We hypothesised that VP1 and WGS genotyping would provide different results than 5'UTR in a subset of samples. Clinical samples from around New South Wales which were positive for EV by commercial polymerase chain reaction (PCR) assays were genotyped by targeting three different viral genome regions: the 5'UTR, VP1 and WGS. Sequencing was performed by Sanger and next generation sequencing. The subtyping results were compared. Of the 74/118 (63%) samples that were successfully typed using both the 5'UTR and the VP1 method, the EV typing result was identical for 46/74 (62%) samples compared to WGS as the gold standard. The same EV group but different EV types were found in 22/74 (30%) samples, and 6/74 (8%) samples belonged to different EV groups depending on typing method used. Genotyping with WGS and VP1 is more accurate than 5'UTR. Genotyping by the 5'UTR method is very sensitive, but less specific.


Subject(s)
Enterovirus Infections , Enterovirus , 5' Untranslated Regions/genetics , Enterovirus/genetics , Enterovirus Infections/diagnosis , Humans , Molecular Typing , Whole Genome Sequencing
2.
J Infect Dis ; 206(2): 148-57, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22561367

ABSTRACT

BACKGROUND: Oseltamivir resistance in A(H1N1)pdm09 influenza is rare, particularly in untreated community cases. Sustained community transmission has not previously been reported. METHODS: Influenza specimens from the Asia-Pacific region were collected through sentinel surveillance, hospital, and general practitioner networks. Clinical and epidemiological information was collected on patients infected with oseltamivir-resistant viruses. RESULTS: Twenty-nine (15%) of 191 A(H1N1)pdm09 viruses collected between May and September 2011 from Hunter New England (HNE), Australia, contained the H275Y neuraminidase substitution responsible for oseltamivir resistance. Only 1 patient had received oseltamivir before specimen collection. The resistant strains were genetically very closely related, suggesting the spread of a single variant. Ninety percent of cases lived within 50 kilometers. Three genetically similar oseltamivir-resistant variants were detected outside of HNE, including 1 strain from Perth, approximately 4000 kilometers away. Computational analysis predicted that neuraminidase substitutions V241I, N369K, and N386S in these viruses may offset the destabilizing effect of the H275Y substitution. CONCLUSIONS: This cluster represents the first widespread community transmission of H275Y oseltamivir-resistant A(H1N1)pdm09 influenza. These cases and data on potential permissive mutations suggest that currently circulating A(H1N1)pdm09 viruses retain viral fitness in the presence of the H275Y mutation and that widespread emergence of oseltamivir-resistant strains may now be more likely.


Subject(s)
Antiviral Agents/pharmacology , Disease Outbreaks , Drug Resistance, Viral , Influenza A Virus, H1N1 Subtype/drug effects , Influenza, Human/virology , Oseltamivir/pharmacology , Adolescent , Adult , Australia/epidemiology , Base Sequence , Child , Child, Preschool , Community-Acquired Infections , DNA, Viral/chemistry , Female , Humans , Infant , Influenza A Virus, H1N1 Subtype/genetics , Influenza, Human/epidemiology , Male , Middle Aged , Molecular Sequence Data , Mutation , Neuraminidase/genetics , Phylogeny , Sequence Alignment , Young Adult
3.
Euro Surveill ; 16(21)2011 May 26.
Article in English | MEDLINE | ID: mdl-21632019

ABSTRACT

The gonococcal porA pseudogene is a popular target for in-house Neisseria gonorrhoeae PCR methods. With this study we present two novel findings: the first case of an N. gonorrhoeae porA pseudogene PCR false-negative result caused by sequence variation, and in the same organism, the first description of a clinical N. gonorrhoeae strain harbouring an N. meningitidis porA sequence.


Subject(s)
Gonorrhea/genetics , Gonorrhea/microbiology , Neisseria gonorrhoeae/genetics , Polymerase Chain Reaction/methods , Porins/genetics , Base Sequence , False Negative Reactions , Gonorrhea/diagnosis , Humans , Molecular Sequence Data , Mutation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...