Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genetics ; 183(3): 1041-53, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19704015

ABSTRACT

The capacity for phenotypic evolution is dependent upon complex webs of functional interactions that connect genotype and phenotype. Wrinkly spreader (WS) genotypes arise repeatedly during the course of a model Pseudomonas adaptive radiation. Previous work showed that the evolution of WS variation was explained in part by spontaneous mutations in wspF, a component of the Wsp-signaling module, but also drew attention to the existence of unknown mutational causes. Here, we identify two new mutational pathways (Aws and Mws) that allow realization of the WS phenotype: in common with the Wsp module these pathways contain a di-guanylate cyclase-encoding gene subject to negative regulation. Together, mutations in the Wsp, Aws, and Mws regulatory modules account for the spectrum of WS phenotype-generating mutations found among a collection of 26 spontaneously arising WS genotypes obtained from independent adaptive radiations. Despite a large number of potential mutational pathways, the repeated discovery of mutations in a small number of loci (parallel evolution) prompted the construction of an ancestral genotype devoid of known (Wsp, Aws, and Mws) regulatory modules to see whether the types derived from this genotype could converge upon the WS phenotype via a novel route. Such types-with equivalent fitness effects-did emerge, although they took significantly longer to do so. Together our data provide an explanation for why WS evolution follows a limited number of mutational pathways and show how genetic architecture can bias the molecular variation presented to selection.


Subject(s)
Adaptation, Physiological/genetics , Evolution, Molecular , Genetic Variation , Pseudomonas fluorescens/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Genotype , Models, Genetic , Mutation , Phenotype
2.
Genome Biol ; 10(5): R51, 2009.
Article in English | MEDLINE | ID: mdl-19432983

ABSTRACT

BACKGROUND: Pseudomonas fluorescens are common soil bacteria that can improve plant health through nutrient cycling, pathogen antagonism and induction of plant defenses. The genome sequences of strains SBW25 and Pf0-1 were determined and compared to each other and with P. fluorescens Pf-5. A functional genomic in vivo expression technology (IVET) screen provided insight into genes used by P. fluorescens in its natural environment and an improved understanding of the ecological significance of diversity within this species. RESULTS: Comparisons of three P. fluorescens genomes (SBW25, Pf0-1, Pf-5) revealed considerable divergence: 61% of genes are shared, the majority located near the replication origin. Phylogenetic and average amino acid identity analyses showed a low overall relationship. A functional screen of SBW25 defined 125 plant-induced genes including a range of functions specific to the plant environment. Orthologues of 83 of these exist in Pf0-1 and Pf-5, with 73 shared by both strains. The P. fluorescens genomes carry numerous complex repetitive DNA sequences, some resembling Miniature Inverted-repeat Transposable Elements (MITEs). In SBW25, repeat density and distribution revealed 'repeat deserts' lacking repeats, covering approximately 40% of the genome. CONCLUSIONS: P. fluorescens genomes are highly diverse. Strain-specific regions around the replication terminus suggest genome compartmentalization. The genomic heterogeneity among the three strains is reminiscent of a species complex rather than a single species. That 42% of plant-inducible genes were not shared by all strains reinforces this conclusion and shows that ecological success requires specialized and core functions. The diversity also indicates the significant size of genetic information within the Pseudomonas pan genome.


Subject(s)
Ecosystem , Genome, Bacterial , Plants/microbiology , Pseudomonas fluorescens/genetics , Plants/metabolism , Pseudomonas fluorescens/classification , Pseudomonas fluorescens/metabolism
3.
Proc Natl Acad Sci U S A ; 104(46): 18247-52, 2007 Nov 13.
Article in English | MEDLINE | ID: mdl-17989226

ABSTRACT

The genome of the plant-colonizing bacterium Pseudomonas fluorescens SBW25 harbors a subset of genes that are expressed specifically on plant surfaces. The function of these genes is central to the ecological success of SBW25, but their study poses significant challenges because no phenotype is discernable in vitro. Here, we describe a genetic strategy with general utility that combines suppressor analysis with IVET (SPyVET) and provides a means of identifying regulators of niche-specific genes. Central to this strategy are strains carrying operon fusions between plant environment-induced loci (EIL) and promoterless 'dapB. These strains are prototrophic in the plant environment but auxotrophic on laboratory minimal medium. Regulatory elements were identified by transposon mutagenesis and selection for prototrophs on minimal medium. Approximately 10(6) mutants were screened for each of 27 strains carrying 'dapB fusions to plant EIL and the insertion point for the transposon determined in approximately 2,000 putative regulator mutants. Regulators were functionally characterized and used to provide insight into EIL phenotypes. For one strain carrying a fusion to the cellulose-encoding wss operon, five different regulators were identified including a diguanylate cyclase, the flagella activator, FleQ, and alginate activator, AmrZ (AlgZ). Further rounds of suppressor analysis, possible by virtue of the SPyVET strategy, revealed an additional two regulators including the activator AlgR, and allowed the regulatory connections to be determined.


Subject(s)
Bacteria/genetics , Genes, Bacterial , Base Sequence , DNA Primers , Molecular Sequence Data , Mutagenesis , Plants/microbiology , Transcription, Genetic
4.
Genetics ; 173(2): 515-26, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16624907

ABSTRACT

Wrinkly spreader (WS) genotypes evolve repeatedly in model Pseudomonas populations undergoing adaptive radiation. Previous work identified genes contributing to the evolutionary success of WS. Here we scrutinize the GGDEF response regulator protein WspR and show that it is both necessary and sufficient for WS. Activation of WspR occurs by phosphorylation and different levels of activation generate phenotypic differences among WS genotypes. Five alleles of wspR, each encoding a protein with a single amino acid substitution, were generated by mutagenesis. Two alleles are constitutively active and cause the ancestral genotype to develop a WS phenotype; the phenotypic effects are allele specific and independent of phosphorylation. Three alleles contain changes in the GGDEF domain and when overexpressed in WS cause reversion to the ancestral phenotype. Ability to mimic this effect by overexpression of a liberated N-terminal domain shows that in WS, regulatory components upstream of WspR are overactive. To connect changes at the nucleotide level with fitness, the effects of variant alleles were examined in both structured and unstructured environments: alleles had adaptive and deleterious effects with trade-offs evident across environments. Despite the proclivity of mutations within wspR to generate WS, sequence analysis of wspR from 53 independently obtained WS showed no evidence of sequence change in this gene.


Subject(s)
Pseudomonas fluorescens/genetics , Alleles , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cellulose/biosynthesis , Conserved Sequence , DNA, Bacterial/genetics , Evolution, Molecular , Genes, Bacterial , Molecular Sequence Data , Phenotype , Phosphorylation , Pseudomonas fluorescens/metabolism , Signal Transduction
5.
Mol Microbiol ; 50(1): 15-27, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14507360

ABSTRACT

The wrinkly spreader (WS) genotype of Pseudomonas fluorescens SBW25 colonizes the air-liquid interface of spatially structured microcosms resulting in formation of a thick biofilm. Its ability to colonize this niche is largely due to overproduction of a cellulosic polymer, the product of the wss operon. Chemical analysis of the biofilm matrix shows that the cellulosic polymer is partially acetylated cellulose, which is consistent with predictions of gene function based on in silico analysis of wss. Both polar and non-polar mutations in the sixth gene of the wss operon (wssF ) or adjacent downstream genes (wssGHIJ ) generated mutants that overproduce non-acetylated cellulose, thus implicating WssFGHIJ in acetylation of cellulose. WssGHI are homologues of AlgFIJ from P. aeruginosa, which together are necessary and sufficient to acetylate alginate polymer. WssF belongs to a newly established Pfam family and is predicted to provide acyl groups to WssGHI. The role of WssJ is unclear, but its similarity to MinD-like proteins suggests a role in polar localization of the acetylation complex. Fluorescent microscopy of Calcofluor-stained biofilms revealed a matrix structure composed of networks of cellulose fibres, sheets and clumped material. Quantitative analyses of biofilm structure showed that acetylation of cellulose is important for effective colonization of the air-liquid interface: mutants identical to WS, but defective in enzymes required for acetylation produced biofilms with altered physical properties. In addition, mutants producing non-acetylated cellulose were unable to spread rapidly across solid surfaces. Inclusion in these assays of a WS mutant with a defect in the GGDEF regulator (WspR) confirmed the requirement for this protein in expression of both acetylated cellulose polymer and bacterial attachment. These results suggest a model in which WspR regulation of cellulose expression and attachment plays a role in the co-ordination of surface colonization.


Subject(s)
Biofilms/growth & development , Cellulose/metabolism , Pseudomonas fluorescens/physiology , Acetylation , Acetyltransferases/genetics , Acetyltransferases/metabolism , Bacterial Adhesion/genetics , Carbohydrates/biosynthesis , Carbohydrates/chemistry , Carbohydrates/genetics , Cellulose/biosynthesis , Congo Red/metabolism , Extracellular Matrix/metabolism , Gas Chromatography-Mass Spectrometry , Gene Deletion , Gene Expression Regulation, Bacterial , Genes, Bacterial/genetics , Genes, Regulator/genetics , Mutagenesis, Insertional , Operon , Pseudomonas fluorescens/genetics , Pseudomonas fluorescens/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...