Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 3933, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37402723

ABSTRACT

Emerging photonic information processing systems require chip-level integration of controllable nanoscale light sources at telecommunication wavelengths. Currently, substantial challenges remain in the dynamic control of the sources, the low-loss integration into a photonic environment, and in the site-selective placement at desired positions on a chip. Here, we overcome these challenges using heterogeneous integration of electroluminescent (EL), semiconducting carbon nanotubes (sCNTs) into hybrid two dimensional - three dimensional (2D-3D) photonic circuits. We demonstrate enhanced spectral line shaping of the EL sCNT emission. By back-gating the sCNT-nanoemitter we achieve full electrical dynamic control of the EL sCNT emission with high on-off ratio and strong enhancement in the telecommunication band. Using nanographene as a low-loss material to electrically contact sCNT emitters directly within a photonic crystal cavity enables highly efficient EL coupling without compromising the optical quality of the cavity. Our versatile approach paves the way for controllable integrated photonic circuits.

2.
Rev Sci Instrum ; 94(1): 013103, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36725578

ABSTRACT

Superconducting nanowire single-photon detectors are an enabling technology for modern quantum information science and are gaining attractiveness for the most demanding photon counting tasks in other fields. Embedding such detectors in photonic integrated circuits enables additional counting capabilities through nanophotonic functionalization. Here, we show how a scalable number of waveguide-integrated superconducting nanowire single-photon detectors can be interfaced with independent fiber optic channels on the same chip. Our plug-and-play detector package is hosted inside a compact and portable closed-cycle cryostat providing cryogenic signal amplification for up to 64 channels. We demonstrate state-of-the-art multi-channel photon counting performance with average system detection efficiency of (40.5 ± 9.4)% and dark count rate of (123 ± 34) Hz for 32 individually addressable detectors at minimal noise-equivalent power of (5.1 ± 1.2) · 10-18 W/Hz. Our detectors achieve timing jitter as low as 26 ps, which increases to (114 ± 17) ps for high-speed multi-channel operation using dedicated time-correlated single photon counting electronics. Our multi-channel single photon receiver offers exciting measurement capabilities for future quantum communication, remote sensing, and imaging applications.

3.
Opt Express ; 31(2): 2675-2688, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36785276

ABSTRACT

The field of quantum information processing offers secure communication protected by the laws of quantum mechanics and is on the verge of finding wider application for the information transfer of sensitive data. To improve cost-efficiency, extensive research is being carried out on the various components required for high data throughput using quantum key distribution (QKD). Aiming for an application-oriented solution, we report the realization of a multichannel QKD system for plug-and-play high-bandwidth secure communication at telecom wavelengths. We designed a rack-sized multichannel superconducting nanowire single photon detector (SNSPD) system, as well as a highly parallelized time-correlated single photon counting (TCSPC) unit. Our system is linked to an FPGA-controlled QKD evaluation setup for continuous operation, allowing us to achieve high secret key rates using a coherent-one-way protocol.

4.
Nano Lett ; 23(2): 407-413, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36445803

ABSTRACT

Efficiently collecting light from single-photon emitters is crucial for photonic quantum technologies. Here, we develop and use an ultralow fluorescence photopolymer to three-dimensionally print micrometer-sized elliptical lenses on individual precharacterized single-photon emitters in hexagonal boron nitride (hBN) nanocrystals, operating in the visible regime. The elliptical lens design beams the light highly efficiently into the far field, rendering bulky objective lenses obsolete. Using back focal plane imaging, we confirm that the emission is collimated to a narrow low-divergence beam with a half width at half-maximum of 2.2°. Using photon correlation measurements, we demonstrate that the single-photon character remains undisturbed by the polymer lens. The strongly directed emission and increased collection efficiency is highly beneficial for quantum optical experiments. Furthermore, our approach paves the way for a highly parallel fiber-based detection of single photons from hBN nanocrystals.

5.
Nano Lett ; 20(4): 2625-2631, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32160472

ABSTRACT

Harnessing tailored disorder for broadband light scattering enables high-resolution signal analysis in nanophotonic spectrometers with a small device footprint. Multiple scattering events in the disordered medium enhance the effective path length which leads to increased resolution. Here we demonstrate an on-chip random spectrometer cointegrated with superconducting single-photon detectors suitable for photon-scarce environments. We combine an efficient broadband fiber-to-chip coupling approach with a random scattering area and broadband transparent silicon nitride waveguides to operate the spectrometer in a diffusive regime. Superconducting nanowire single-photon detectors at each output waveguide are used to perform spectral-to-spatial mapping via the transmission matrix at the system, allowing us to reconstruct a given probe signal. We show operation over a wide spectral range with sensitivity down to powers of -111.5 dBm in the telecom band.

6.
Opt Lett ; 44(20): 5089-5092, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31613271

ABSTRACT

Photonic integrated circuits require efficient interfaces to fiber optic components for applications in optical communication, computing, and sensing. Current optical interconnects rely on edge or grating couplers with limitations in terms of alignment tolerances, efficiency, and bandwidth, respectively. Here, we present a scalable coupling concept that allows fiber-to-chip coupling to the fundamental transverse electric and transverse magnetic modes based on three-dimensional nanostructures exploiting total internal reflection. We demonstrate close to octave-spanning highly efficient coupling to nanophotonic waveguides in the visible wavelength range. Our coupling scheme can be adjusted for other wavelength regimes and fiber mode-field diameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...