Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Aviat Space Environ Med ; 85(7): 687-93, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25022155

ABSTRACT

INTRODUCTION: Cardiopulmonary resuscitation (CPR) in microgravity is challenging. There are three single-person CPR techniques that can be performed in microgravity: the Evetts-Russomano (ER), Handstand (HS), and Reverse Bear Hug (RBH). All three methods have been evaluated in parabolic flights, but only the ER method has been shown to be effective in prolonged microgravity simulation. All three methods of CPR have yet to be evaluated using the current 2010 guidelines. METHODS: There were 23 male subjects who were recruited to perform simulated terrestrial CPR (+1 G(z)) and the three microgravity CPR methods for four sets of external chest compressions (ECC). To simulate microgravity, the subjects used a body suspension device (BSD) and trolley system. True depth (D(T)), ECC rate, and oxygen consumption (Vo2) were measured. RESULTS: The mean (+/- SD) D(T) for the ER (37.4 +/- 1.5 mm) and RBH methods (23.9 +/- 1.4 mm) were significantly lower than +1 G(z) CPR. However, both methods attained an ECC rate that met the guidelines (105.6 +/- 0.8; 101.3 +/- 1.5 compressions/min). The HS method achieved a superior D(T) (49.3 +/- 1.2 mm), but a poor ECC rate (91.9 +/- 2.2 compressions/min). Vo2 for ER and HS was higher than +1 Gz; however, the RBH was not. CONCLUSION: All three methods have merit in performing ECC in simulated microgravity; the ER and RBH have adequate ECC rates, and the HS method has adequate D(T). However, all methods failed to meet all criteria for the 2010 guidelines. Further research to evaluate the most effective method of CPR in microgravity is needed.


Subject(s)
Cardiopulmonary Resuscitation/methods , Weightlessness Simulation , Adolescent , Adult , Aerospace Medicine , Analysis of Variance , Heart Rate/physiology , Humans , Male , Manikins , Oxygen Consumption/physiology , Pulmonary Ventilation/physiology , Young Adult
2.
Extrem Physiol Med ; 2(1): 11, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23849595

ABSTRACT

BACKGROUND: Current 2010 terrestrial (1Gz) CPR guidelines have been advocated by space agencies for hypogravity and microgravity environments, but may not be feasible. The aims of this study were to (1) evaluate rescuer performance over 1.5 min of external chest compressions (ECCs) during simulated Martian hypogravity (0.38Gz) and microgravity (µG) in relation to 1Gz and rest baseline and (2) compare the physiological costs of conducting ECCs in accordance with the 2010 and 2005 CPR guidelines. METHODS: Thirty healthy male volunteers, ranging from 17 to 30 years, performed four sets of 30 ECCs for 1.5 min using the 2010 and 2005 ECC guidelines during 1Gz, 0.38Gz and µG simulations (Evetts-Russomano (ER) method), achieved by the use of a body suspension device. ECC depth and rate, range of elbow flexion, post-ECC heart rate (HR), minute ventilation (VE), peak oxygen consumption (VO2peak) and rate of perceived exertion (RPE) were measured. RESULTS: All volunteers completed the study. Mean ECC rate was achieved for all gravitational conditions, but true depth during simulated microgravity was not sufficient for the 2005 (28.5 ± 7.0 mm) and 2010 (32.9 ± 8.7 mm) guidelines, even with a mean range of elbow flexion of 15°. HR, VE and VO2peak increased to an average of 136 ± 22 bpm, 37.5 ± 10.3 L·min-1, 20.5 ± 7.6 mL·kg-1·min-1 for 0.38Gz and 161 ± 19 bpm, 58.1 ± 15.0 L·min-1, 24.1 ± 5.6 mL·kg-1·min-1 for µG from a baseline of 84 ± 15 bpm, 11.4 ± 5.9 L·min-1, 3.2 ± 1.1 mL·kg-1·min-1, respectively. RPE was the only variable to increase with the 2010 guidelines. CONCLUSION: No additional physiological cost using the 2010 basic life support (BLS) guidelines was needed for healthy males performing ECCs for 1.5 min, independent of gravitational environment. This cost, however, increased for each condition tested when the two guidelines were compared. Effective ECCs were not achievable for both guidelines in simulated µG using the ER BLS method. This suggests that future implementation of an ER BLS in a simulated µG instruction programme as well as upper arm strength training is required to perform effective BLS in space.

SELECTION OF CITATIONS
SEARCH DETAIL
...