Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
BMC Womens Health ; 24(1): 275, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38706007

ABSTRACT

BACKGROUND: In this study we shed light on ongoing trends in contraceptive use in Flanders (Belgium). Building on the fundamental cause theory and social diffusion of innovation theory, we examine socio-economic gradients in contraceptive use and the relationship to health behaviours. METHODS: Using the unique and recently collected (2020) ISALA data, we used multinomial logistic regression to model the uptake of contraceptives and its association to educational level and health behaviour (N:4316 women). RESULTS: Higher educated women, and women with a healthy lifestyle especially, tend to use non-hormonal contraceptives or perceived lower-dosage hormonal contraceptives that are still trustworthy from a medical point of view. Moreover, we identified a potentially vulnerable group in terms of health as our results indicate that women who do not engage in preventive health behaviours are more likely to use no, or no modern, contraceptive method. DISCUSSION: The fact that higher educated women and women with a healthy lifestyle are less likely to use hormonal contraceptive methods is in line with patient empowerment, as women no longer necessarily follow recommendations by healthcare professionals, and there is a growing demand for naturalness in Western societies. CONCLUSION: The results of this study can therefore be used to inform policy makers and reproductive healthcare professionals, since up-to-date understanding of women's contraceptive choices is clearly needed in order to develop effective strategies to prevent sexually transmitted infections and unplanned pregnancies, and in which women can take control over their sexuality and fertility in a comfortable and pleasurable way.


Subject(s)
Contraception Behavior , Health Behavior , Humans , Female , Adult , Belgium , Contraception Behavior/statistics & numerical data , Contraception Behavior/psychology , Young Adult , Educational Status , Middle Aged , Adolescent , Contraception/statistics & numerical data , Contraception/methods , Choice Behavior , Health Knowledge, Attitudes, Practice
2.
Nat Microbiol ; 8(11): 2183-2195, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37884815

ABSTRACT

Understanding the composition and function of the vaginal microbiome is crucial for reproductive and overall health. Here we established the Isala citizen-science project to analyse the vaginal microbiomes of 3,345 women in Belgium (18-98 years) through self-sampling, 16S amplicon sequencing and extensive questionnaires. The overall vaginal microbiome composition was strongly tied to age, childbirth and menstrual cycle phase. Lactobacillus species dominated 78% of the vaginal samples. Specific bacterial taxa also showed to co-occur in modules based on network correlation analysis. Notably, the module containing Lactobacillus crispatus, Lactobacillus jensenii and Limosilactobacillus taxa was positively linked to oestrogen levels and contraceptive use and negatively linked to childbirth and breastfeeding. Other modules, named after abundant taxa (Gardnerella, Prevotella and Bacteroides), correlated with multiple partners, menopause, menstrual hygiene and contraceptive use. With this resource-rich vaginal microbiome map and associated health, life-course, lifestyle and dietary factors, we provide unique data and insights for follow-up clinical and mechanistic research.


Subject(s)
Hygiene , Microbiota , Female , Humans , Menstruation , Vagina/microbiology , Contraceptive Agents
3.
mBio ; 14(5): e0030023, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37655878

ABSTRACT

IMPORTANCE: The salivary microbiome has been proven to play a crucial role in local and systemic diseases. Moreover, the effects of biological and lifestyle factors such as oral hygiene and smoking on this microbial community have already been explored. However, what was not yet well understood was the natural variation of the saliva microbiome in healthy women and how this is associated with specific use of hormonal contraception and with the number of different sexual partners with whom microbiome exchange is expected regularly. In this paper, we characterized the salivary microbiome of 255 healthy women of reproductive age using an in-depth questionnaire and self-sampling kits. Using the large metadata set, we were able to investigate the associations of several host-related and lifestyle variables with the salivary microbiome profiles. Our study shows a high preservation between individuals.


Subject(s)
Microbiota , Reproduction , Humans , Female , Saliva , Sexual Partners , Health Status , RNA, Ribosomal, 16S
4.
FASEB J ; 36(11): e22578, 2022 11.
Article in English | MEDLINE | ID: mdl-36183353

ABSTRACT

The response to lifestyle intervention studies is often heterogeneous, especially in older adults. Subtle responses that may represent a health gain for individuals are not always detected by classical health variables, stressing the need for novel biomarkers that detect intermediate changes in metabolic, inflammatory, and immunity-related health. Here, our aim was to develop and validate a molecular multivariate biomarker maximally sensitive to the individual effect of a lifestyle intervention; the Personalized Lifestyle Intervention Status (PLIS). We used 1 H-NMR fasting blood metabolite measurements from before and after the 13-week combined physical and nutritional Growing Old TOgether (GOTO) lifestyle intervention study in combination with a fivefold cross-validation and a bootstrapping method to train a separate PLIS score for men and women. The PLIS scores consisted of 14 and four metabolites for females and males, respectively. Performance of the PLIS score in tracking health gain was illustrated by association of the sex-specific PLIS scores with several classical metabolic health markers, such as BMI, trunk fat%, fasting HDL cholesterol, and fasting insulin, the primary outcome of the GOTO study. We also showed that the baseline PLIS score indicated which participants respond positively to the intervention. Finally, we explored PLIS in an independent physical activity lifestyle intervention study, showing similar, albeit remarkably weaker, associations of PLIS with classical metabolic health markers. To conclude, we found that the sex-specific PLIS score was able to track the individual short-term metabolic health gain of the GOTO lifestyle intervention study. The methodology used to train the PLIS score potentially provides a useful instrument to track personal responses and predict the participant's health benefit in lifestyle interventions similar to the GOTO study.


Subject(s)
Life Style , Obesity , Aged , Biomarkers , Cholesterol, HDL , Female , Humans , Insulin , Male
5.
Microbiol Spectr ; 10(5): e0168222, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36154666

ABSTRACT

Primary care urgently needs treatments for coronavirus disease 2019 (COVID-19) patients because current options are limited, while these patients who do not require hospitalization encompass more than 90% of the people infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we evaluated a throat spray containing three Lactobacillaceae strains with broad antiviral properties in a randomized, double-blind, placebo-controlled trial. Before the availability of vaccines, 78 eligible COVID-19 patients were randomized to verum (n = 41) and placebo (n = 37) within 96 h of a positive PCR-based SARS-CoV-2 diagnosis, and a per-protocol analysis was performed. Symptoms and severity were reported daily via an online diary. Combined nose-throat swabs and dried blood spots were collected at regular time points in the study for microbiome, viral load, and antibody analyses. The daily reported symptoms were highly variable, with no added benefit for symptom resolution in the verum group. However, based on 16S V4 amplicon sequencing, the acute symptom score (fever, diarrhea, chills, and muscle pain) was significantly negatively associated with the relative abundance of amplicon sequence variants (ASVs) that included the applied lactobacilli (P < 0.05). Furthermore, specific monitoring of these applied lactobacilli strains showed that they were detectable via quantitative PCR (qPCR) analysis in 82% of the patients in the verum group. At the end of the trial, a trend toward lower test positivity for SARS-CoV-2 was observed for the verum group (2/30; 6.7% positive) than for the placebo group (7/27; 26% positive) (P = 0.07). These data indicate that the throat spray with selected antiviral lactobacilli could have the potential to reduce nasopharyngeal viral loads and acute symptoms but should be applied earlier in the viral infection process and substantiated in larger trials. IMPORTANCE Viral respiratory tract infections result in significant health and economic burdens, as highlighted by the COVID-19 pandemic. Primary care patients represent 90% of those infected with SARS-CoV-2, yet their treatment options are limited to analgesics and antiphlogistics, and few broadly acting antiviral strategies are available. Microbiome or probiotic therapy is a promising emerging treatment option because it is based on the multifactorial action of beneficial bacteria against respiratory viral disease. In this study, an innovative topical throat spray with select beneficial lactobacilli was administered to primary COVID-19 patients. A remote study setup (reducing the burden on hospitals and general practitioners) was successfully implemented using online questionnaires and longitudinal self-sampling. Our results point toward the potential mechanisms of action associated with spray administration at the levels of viral loads and microbiome modulation in the upper respiratory tract and pave the way for future clinical applications of beneficial bacteria against viral diseases.


Subject(s)
COVID-19 Drug Treatment , Humans , Antiviral Agents/therapeutic use , COVID-19 Testing , Lactobacillus , Outpatients , Pandemics/prevention & control , Pharynx , SARS-CoV-2 , Treatment Outcome , Oral Sprays
6.
Front Plant Sci ; 12: 517547, 2021.
Article in English | MEDLINE | ID: mdl-33897717

ABSTRACT

Among plants, gender dimorphism occurs in about 10% of all angiosperms and more than 50% of all moss taxa, with dwarf males (DM) found exclusively in some unisexual mosses. In this study, we explore the role of male dwarfism as a reproductive strategy in the widespread acrocarpous moss Dicranum scoparium, which has facultative male dwarfism, having both dwarf males (DMs) and normal-sized males (NMs). We retrieved 119 SNP markers from transcriptomes which were used to genotype 403 samples from 11 sites at seven localities in southern Sweden. Our aims were to compare the genetic variability and genetic structure of sexually reproducing populations at different geographic levels (cushion, site, and locality) and compare in particular the relative contribution of females, dwarf males and normal-sized males to the observed genetic diversity. The numbers of DMs differed strongly between sites, but when present, they usually outnumbered both females and NMs. Low genetic differentiation was found at locality level. Genetic differentiation was strongest between cushions for females and NMs and within cushions for DMs indicating small scale structuring and sometimes inbreeding. NMs were more clonal than either DMs or females. Genetic diversity was similar between females and DMs, but lower for NMs. Two haplotypes were shared between females and DMs and one haplotype was shared between a DM and a NM. In conclusion, our results show that DMs and NMs play different roles in reproduction, inbreeding may occur at cushion level, but gene flow is high enough to prevent substantial genetic drift.

7.
ACS Synth Biol ; 9(6): 1361-1375, 2020 06 19.
Article in English | MEDLINE | ID: mdl-32413257

ABSTRACT

The construction of powerful cell factories requires intensive and extensive remodelling of microbial genomes. Considering the rapidly increasing number of these synthetic biology endeavors, there is an increasing need for DNA watermarking strategies that enable the discrimination between synthetic and native gene copies. While it is well documented that codon usage can affect translation, and most likely mRNA stability in eukaryotes, remarkably few quantitative studies explore the impact of watermarking on transcription, protein expression, and physiology in the popular model and industrial yeast Saccharomyces cerevisiae. The present study, using S. cerevisiae as eukaryotic paradigm, designed, implemented, and experimentally validated a systematic strategy to watermark DNA with minimal alteration of yeast physiology. The 13 genes encoding proteins involved in the major pathway for sugar utilization (i.e., glycolysis and alcoholic fermentation) were simultaneously watermarked in a yeast strain using the previously published pathway swapping strategy. Carefully swapping codons of these naturally codon optimized, highly expressed genes, did not affect yeast physiology and did not alter transcript abundance, protein abundance, and protein activity besides a mild effect on Gpm1. The markerQuant bioinformatics method could reliably discriminate native from watermarked genes and transcripts. Furthermore, presence of watermarks enabled selective CRISPR/Cas genome editing, specifically targeting the native gene copy while leaving the synthetic, watermarked variant intact. This study offers a validated strategy to simply watermark genes in S. cerevisiae.


Subject(s)
DNA/chemistry , RNA/chemistry , Synthetic Biology/methods , Base Sequence , CRISPR-Cas Systems/genetics , Gene Editing , Glycolysis/genetics , Research Design , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
8.
Mol Plant Pathol ; 20(12): 1619-1635, 2019 12.
Article in English | MEDLINE | ID: mdl-31512371

ABSTRACT

Several Phyllosticta species are known as pathogens of Citrus spp., and are responsible for various disease symptoms including leaf and fruit spots. One of the most important species is P. citricarpa, which causes a foliar and fruit disease called citrus black spot. The Phyllosticta species occurring on citrus can most effectively be distinguished from P. citricarpa by means of multilocus DNA sequence data. Recent studies also demonstrated P. citricarpa to be heterothallic, and reported successful mating in the laboratory. Since the domestication of citrus, different clones of P. citricarpa have escaped Asia to other continents via trade routes, with obvious disease management consequences. This pathogen profile represents a comprehensive literature review of this pathogen and allied taxa associated with citrus, focusing on identification, distribution, genomics, epidemiology and disease management. This review also considers the knowledge emerging from seven genomes of Phyllosticta spp., demonstrating unknown aspects of these species, including their mating behaviour. TAXONOMY: Phyllosticta citricarpa (McAlpine) Aa, 1973. Kingdom Fungi, Phylum Ascomycota, Class Dothideomycetes, Order Botryosphaeriales, Family Phyllostictaceae, Genus Phyllosticta, Species citricarpa. HOST RANGE: Confirmed on more than 12 Citrus species, Phyllosticta citricarpa has only been found on plant species in the Rutaceae. DISEASE SYMPTOMS: P. citricarpa causes diverse symptoms such as hard spot, virulent spot, false melanose and freckle spot on fruit, and necrotic lesions on leaves and twigs. USEFUL WEBSITES: DOE Joint Genome Institute MycoCosm portals for the Phyllosticta capitalensis (https://genome.jgi.doe.gov/Phycap1), P. citriasiana (https://genome.jgi.doe.gov/Phycit1), P. citribraziliensis (https://genome.jgi.doe.gov/Phcit1), P. citrichinaensis (https://genome.jgi.doe.gov/Phcitr1), P. citricarpa (https://genome.jgi.doe.gov/Phycitr1, https://genome.jgi.doe.gov/Phycpc1), P. paracitricarpa (https://genome.jgi.doe.gov/Phy27169) genomes. All available Phyllosticta genomes on MycoCosm can be viewed at https://genome.jgi.doe.gov/Phyllosticta.


Subject(s)
Ascomycota/physiology , Citrus/microbiology , Ascomycota/classification , Ascomycota/genetics , Genes, Mating Type, Fungal , Genome, Fungal , Phylogeography , Plant Diseases/microbiology
9.
Front Genet ; 9: 504, 2018.
Article in English | MEDLINE | ID: mdl-30505317

ABSTRACT

The ability of the yeast Saccharomyces cerevisiae to convert glucose, even in the presence of oxygen, via glycolysis and the fermentative pathway to ethanol has played an important role in its domestication. Despite the extensive knowledge on these pathways in S. cerevisiae, relatively little is known about their genetic makeup in other industrially relevant Saccharomyces yeast species. In this study we explore the diversity of the glycolytic and fermentative pathways within the Saccharomyces genus using S. cerevisiae, Saccharomyces kudriavzevii, and Saccharomyces eubayanus as paradigms. Sequencing data revealed a highly conserved genetic makeup of the glycolytic and fermentative pathways in the three species in terms of number of paralogous genes. Although promoter regions were less conserved between the three species as compared to coding sequences, binding sites for Rap1, Gcr1 and Abf1, main transcriptional regulators of glycolytic and fermentative genes, were highly conserved. Transcriptome profiling of these three strains grown in aerobic batch cultivation in chemically defined medium with glucose as carbon source, revealed a remarkably similar expression of the glycolytic and fermentative genes across species, and the conserved classification of genes into major and minor paralogs. Furthermore, transplantation of the promoters of major paralogs of S. kudriavzevii and S. eubayanus into S. cerevisiae demonstrated not only the transferability of these promoters, but also the similarity of their strength and response to various environmental stimuli. The relatively low homology of S. kudriavzevii and S. eubayanus promoters to their S. cerevisiae relatives makes them very attractive alternatives for strain construction in S. cerevisiae, thereby expanding the S. cerevisiae molecular toolbox.

10.
Genome Biol Evol ; 10(7): 1765-1782, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29931311

ABSTRACT

The combined actions of proteins in networks underlie all fundamental cellular functions. Deeper insights into the dynamics of network composition across species and their functional consequences are crucial to fully understand protein network evolution. Large-scale comparative studies with high phylogenetic resolution are now feasible through the recent rise in available genomic data sets of both model and nonmodel species. Here, we focus on the polarity network, which is universally essential for cell proliferation and studied in great detail in the model organism, Saccharomyces cerevisiae. We examine 42 proteins, directly related to cell polarization, across 298 fungal strains/species to determine the composition of the network and patterns of conservation and diversification. We observe strong protein conservation for a group of 23 core proteins: >95% of all examined strains/species possess at least 14 of these core proteins, albeit in varying compositions, and non of the individual core proteins is 100% conserved. We find high levels of variation in prevalence and sequence identity in the remaining 19 proteins, resulting in distinct lineage-specific compositions of the network in the majority of strains/species. We show that the observed diversification in network composition correlates with lineage, lifestyle, and genetic distance. Yeast, filamentous and basal unicellular fungi, form distinctive groups based on these analyses, with substantial differences to their polarization network. Our study shows that the fungal polarization network is highly dynamic, even between closely related species, and that functional conservation appears to be achieved by varying the specific components of the fungal polarization repertoire.


Subject(s)
Evolution, Molecular , Fungal Proteins/genetics , Fungi/cytology , Fungi/genetics , Phylogeny , Protein Interaction Maps , Cell Polarity , Fungal Proteins/metabolism , Fungi/metabolism , Genes, Fungal , Genome, Fungal , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
11.
Proc Natl Acad Sci U S A ; 115(17): 4429-4434, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29643074

ABSTRACT

Many fungi are polykaryotic, containing multiple nuclei per cell. In the case of heterokaryons, there are different nuclear types within a single cell. It is unknown what the different nuclear types contribute in terms of mRNA expression levels in fungal heterokaryons. Each cell of the mushroom Agaricus bisporus contains two to 25 nuclei of two nuclear types originating from two parental strains. Using RNA-sequencing data, we assess the differential mRNA contribution of individual nuclear types and its functional impact. We studied differential expression between genes of the two nuclear types, P1 and P2, throughout mushroom development in various tissue types. P1 and P2 produced specific mRNA profiles that changed through mushroom development. Differential regulation occurred at the gene level, rather than at the locus, chromosomal, or nuclear level. P1 dominated mRNA production throughout development, and P2 showed more differentially up-regulated genes in important functional groups. In the vegetative mycelium, P2 up-regulated almost threefold more metabolism genes and carbohydrate active enzymes (cazymes) than P1, suggesting phenotypic differences in growth. We identified widespread transcriptomic variation between the nuclear types of A. bisporus Our method enables studying nucleus-specific expression, which likely influences the phenotype of a fungus in a polykaryotic stage. Our findings have a wider impact to better understand gene regulation in fungi in a heterokaryotic state. This work provides insight into the transcriptomic variation introduced by genomic nuclear separation.


Subject(s)
Agaricus/metabolism , Cell Nucleus/metabolism , Gene Expression Regulation, Fungal/physiology , RNA, Fungal/biosynthesis , RNA, Messenger/biosynthesis , Up-Regulation/physiology , Agaricus/genetics , Cell Nucleus/genetics , RNA, Fungal/genetics , RNA, Messenger/genetics , Transcriptome/physiology
12.
Clin Infect Dis ; 64(11): 1494-1501, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28498943

ABSTRACT

BACKGROUND.: India is home to 25% of all tuberculosis cases and the second highest number of multidrug resistant cases worldwide. However, little is known about the genetic diversity and resistance determinants of Indian Mycobacterium tuberculosis, particularly for the primary lineages found in India, lineages 1 and 3. METHODS.: We whole genome sequenced 223 randomly selected M. tuberculosis strains from 196 patients within the Tiruvallur and Madurai districts of Tamil Nadu in Southern India. Using comparative genomics, we examined genetic diversity, transmission patterns, and evolution of resistance. RESULTS.: Genomic analyses revealed (11) prevalence of strains from lineages 1 and 3, (11) recent transmission of strains among patients from the same treatment centers, (11) emergence of drug resistance within patients over time, (11) resistance gained in an order typical of strains from different lineages and geographies, (11) underperformance of known resistance-conferring mutations to explain phenotypic resistance in Indian strains relative to studies focused on other geographies, and (11) the possibility that resistance arose through mutations not previously implicated in resistance, or through infections with multiple strains that confound genotype-based prediction of resistance. CONCLUSIONS.: In addition to substantially expanding the genomic perspectives of lineages 1 and 3, sequencing and analysis of M. tuberculosis whole genomes from Southern India highlight challenges of infection control and rapid diagnosis of resistant tuberculosis using current technologies. Further studies are needed to fully explore the complement of diversity and resistance determinants within endemic M. tuberculosis populations.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial , Mycobacterium tuberculosis/genetics , Tuberculosis/diagnosis , Tuberculosis/microbiology , Adult , Antitubercular Agents/pharmacology , Base Sequence , Female , Genetic Variation , Humans , India/epidemiology , Male , Mutation , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/drug effects , Phylogeny , Polymerase Chain Reaction , Tuberculosis/epidemiology , Tuberculosis/transmission
13.
Sci Rep ; 7(1): 310, 2017 03 22.
Article in English | MEDLINE | ID: mdl-28331193

ABSTRACT

Mushrooms are the most conspicuous fungal structures. Transcription factors (TFs) Bri1 and Hom1 of the model fungus Schizophyllum commune are involved in late stages of mushroom development, while Wc-2, Hom2, and Fst4 function early in development. Here, it is shown that Bri1 and Hom1 also stimulate vegetative growth, while biomass formation is repressed by Wc-2, Hom2, and Fst4. The Δbri1Δbri1 and the Δhom1Δhom1 strains formed up to 0.6 fold less biomass when compared to wild-type, while Δwc-2Δwc-2, Δhom2Δhom2, and Δfst4Δfst4 strains formed up to 2.8 fold more biomass. Inactivation of TF gene tea1, which was downregulated in the Δwc-2Δwc-2, Δhom2Δhom2, and Δfst4Δfst4 strains, resulted in a strain that was severely affected in mushroom development and that produced 1.3 fold more biomass than the wild-type. In contrast, introducing a constitutive active version of hom2 that had 4 predicted phosphorylation motifs eliminated resulted in radial growth inhibition and prompt fructification in both Δhom2 and wild-type strains, even in sterile monokaryons. Together, it is concluded that TFs involved in mushroom formation also modulate vegetative growth. Among these TFs is the homeodomain protein Hom2, being the first time that this class of regulatory proteins is implicated in repression of vegetative growth in a eukaryote.


Subject(s)
Gene Expression Regulation, Fungal , Schizophyllum/growth & development , Schizophyllum/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Biomass , Gene Deletion , Gene Expression
14.
Sci Rep ; 6: 33640, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27659065

ABSTRACT

Recent genome-wide studies have demonstrated that fungi possess the machinery to alternatively splice pre-mRNA. However, there has not been a systematic categorization of the functional impact of alternative splicing in a fungus. We investigate alternative splicing and its functional consequences in the model mushroom forming fungus Schizophyllum commune. Alternative splicing was demonstrated for 2,285 out of 12,988 expressed genes, resulting in 20% additional transcripts. Intron retentions were the most common alternative splicing events, accounting for 33% of all splicing events, and 43% of the events in coding regions. On the other hand, exon skipping events were rare in coding regions (1%) but enriched in UTRs where they accounted for 57% of the events. Specific functional groups, including transcription factors, contained alternatively spliced genes. Alternatively spliced transcripts were regulated differently throughout development in 19% of the 2,285 alternatively spliced genes. Notably, 69% of alternatively spliced genes have predicted alternative functionality by loss or gain of functional domains, or by acquiring alternative subcellular locations. S. commune exhibits more alternative splicing than any other studied fungus. Taken together, alternative splicing increases the complexity of the S. commune proteome considerably and provides it with a rich repertoire of alternative functionality that is exploited dynamically.

15.
Appl Microbiol Biotechnol ; 100(16): 7151-9, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27207144

ABSTRACT

The Cys2His2 zinc finger protein gene c2h2 of Schizophyllum commune is involved in mushroom formation. Its inactivation results in a strain that is arrested at the stage of aggregate formation. In this study, the c2h2 orthologue of Agaricus bisporus was over-expressed in this white button mushroom forming basidiomycete using Agrobacterium-mediated transformation. Morphology, cap expansion rate, and total number and biomass of mushrooms were not affected by over-expression of c2h2. However, yield per day of the c2h2 over-expression strains peaked 1 day earlier. These data and expression analysis indicate that C2H2 impacts timing of mushroom formation at an early stage of development, making its encoding gene a target for breeding of commercial mushroom strains.


Subject(s)
Agaricus/genetics , Agaricus/physiology , CYS2-HIS2 Zinc Fingers/genetics , Fruiting Bodies, Fungal/genetics , Fruiting Bodies, Fungal/physiology , Agaricus/growth & development , CYS2-HIS2 Zinc Fingers/physiology , Gene Expression Regulation , Genome, Fungal/genetics , Schizophyllum/physiology
16.
Bioinformatics ; 31(21): 3437-44, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26116928

ABSTRACT

BACKGROUND: With more and more genomes being sequenced, detecting synteny between genomes becomes more and more important. However, for microorganisms the genomic divergence quickly becomes large, resulting in different codon usage and shuffling of gene order and gene elements such as exons. RESULTS: We present Proteny, a methodology to detect synteny between diverged genomes. It operates on the amino acid sequence level to be insensitive to codon usage adaptations and clusters groups of exons disregarding order to handle diversity in genomic ordering between genomes. Furthermore, Proteny assigns significance levels to the syntenic clusters such that they can be selected on statistical grounds. Finally, Proteny provides novel ways to visualize results at different scales, facilitating the exploration and interpretation of syntenic regions. We test the performance of Proteny on a standard ground truth dataset, and we illustrate the use of Proteny on two closely related genomes (two different strains of Aspergillus niger) and on two distant genomes (two species of Basidiomycota). In comparison to other tools, we find that Proteny finds clusters with more true homologies in fewer clusters that contain more genes, i.e. Proteny is able to identify a more consistent synteny. Further, we show how genome rearrangements, assembly errors, gene duplications and the conservation of specific genes can be easily studied with Proteny. AVAILABILITY AND IMPLEMENTATION: Proteny is freely available at the Delft Bioinformatics Lab website http://bioinformatics.tudelft.nl/dbl/software. CONTACT: t.gehrmann@tudelft.nl SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Fungal Proteins/metabolism , Genome, Fungal , Genomics/methods , Proteome/analysis , Software , Synteny , Chromosome Mapping , Chromosomes, Fungal , Computer Graphics , Fungal Proteins/genetics , Fungi/physiology , Gene Duplication , Gene Order , Gene Rearrangement
SELECTION OF CITATIONS
SEARCH DETAIL
...