Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 130(12): 126802, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37027856

ABSTRACT

The nature of the antiferromagnetic order in the heavy fermion metal YbRh_{2}Si_{2}, its quantum criticality, and superconductivity, which appears at low mK temperatures, remain open questions. We report measurements of the heat capacity over the wide temperature range 180 µK-80 mK, using current sensing noise thermometry. In zero magnetic field we observe a remarkably sharp heat capacity anomaly at 1.5 mK, which we identify as an electronuclear transition into a state with spatially modulated electronic magnetic order of maximum amplitude 0.1 µ_{B}. We also report results of measurements in magnetic fields in the range 0 to 70 mT, applied perpendicular to the c axis, which show eventual suppression of this order. These results demonstrate a coexistence of a large moment antiferromagnet with putative superconductivity.

2.
Science ; 373(6558): 1012-1016, 2021 08 27.
Article in English | MEDLINE | ID: mdl-34446602

ABSTRACT

Materials with multiple superconducting phases are rare. Here, we report the discovery of two-phase unconventional superconductivity in CeRh2As2 Using thermodynamic probes, we establish that the superconducting critical field of its high-field phase is as high as 14 tesla, even though the transition temperature is only 0.26 kelvin. Furthermore, a transition between two different superconducting phases is observed in a c axis magnetic field. Local inversion-symmetry breaking at the cerium sites enables Rashba spin-orbit coupling alternating between the cerium sublayers. The staggered Rashba coupling introduces a layer degree of freedom to which the field-induced transition and high critical field seen in experiment are likely related.

3.
Phys Rev Lett ; 125(20): 207001, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33258641

ABSTRACT

In the iron-pnictide material CeFeAsO not only the Fe moments, but also the local 4f moments of the Ce order antiferromagnetically at low temperatures. We elucidate on the peculiar role of the Ce on the emergence of superconductivity. While application of pressure suppresses the iron SDW ordering temperature monotonously up to 4 GPa, the Ce-4f magnetism is stabilized until both types of magnetic orders disappear abruptly and a narrow SC dome develops. With further increasing pressure characteristics of a Kondo-lattice system become more and more apparent in the electrical resistivity. This suggests a connection of the emergence of superconductivity with the extinction of the magnetic order and the onset of Kondo screening of the Ce-4f moments.

4.
J Phys Condens Matter ; 32(49): 495801, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-32914761

ABSTRACT

The magnetocrystalline anisotropy of GdRh2Si2 is examined in detail via the electron spin resonance (ESR) of its well-localised Gd3+ moments. Below T N = 107 K, long range magnetic order sets in with ferromagnetic layers in the (aa)-plane stacked antiferromagnetically along the c-axis of the tetragonal structure. Interestingly, the easy-plane anisotropy allows for the observation of antiferromagnetic resonance at X- and Q-band microwave frequencies. In addition to the easy-plane anisotropy we have also quantified the weaker fourfold anisotropy within the easy plane. The obtained resonance fields are modelled in terms of eigenoscillations of the two antiferromagnetically coupled sublattices. Conversely, this model provides plots of the eigenfrequencies as a function of field and the specific anisotropy constants. Such calculations have rarely been done. Therefore our analysis is prototypical for other systems with fourfold in-plane anisotropy. It is demonstrated that the experimental in-plane ESR data may be crucial for a precise knowledge of the out-of-plane anisotropy.

5.
Phys Rev Lett ; 122(7): 077202, 2019 Feb 22.
Article in English | MEDLINE | ID: mdl-30848651

ABSTRACT

Yb(Rh_{1-x}Co_{x})_{2}Si_{2} is a model system to address two challenging problems in the field of strongly correlated electron systems. The first is the intriguing competition between ferromagnetic (FM) and antiferromagnetic (AFM) order when approaching a magnetic quantum critical point (QCP). The second is the occurrence of magnetic order along a very hard crystalline electric field (CEF) direction, i.e., along the one with the smallest available magnetic moment. Here, we present a detailed study of the evolution of the magnetic order in this system from a FM state with moments along the very hard c direction at x=0.27 towards the yet unknown magnetic state at x=0. We first observe a transition towards an AFM canted state with decreasing x and then to a pure AFM state. This confirms that the QCP in YbRh_{2}Si_{2} is AFM, but the phase diagram is very similar to those observed in some inherently FM systems like NbFe_{2} and CeRuPO, which suggests that the basic underlying instability might be FM. Despite the huge CEF anisotropy the ordered moment retains a component along the c axis also in the AFM state. The huge CEF anisotropy in Yb(Rh_{1-x}Co_{x})_{2}Si_{2} excludes that this hard-axis ordering originates from a competing exchange anisotropy as often proposed for other heavy-fermion systems. Instead, it points to an order-by-disorder based mechanism.

6.
Nat Commun ; 10(1): 796, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30770811

ABSTRACT

Application of the Luttinger theorem to the Kondo lattice YbRh2Si2 suggests that its large 4f-derived Fermi surface (FS) in the paramagnetic (PM) regime should be similar in shape and volume to that of the divalent local-moment antiferromagnet (AFM) EuRh2Si2 in its PM regime. Here we show by angle-resolved photoemission spectroscopy that paramagnetic EuRh2Si2 has a large FS essentially similar to the one seen in YbRh2Si2 down to 1 K. In EuRh2Si2 the onset of AFM order below 24.5 K induces an extensive fragmentation of the FS due to Brillouin zone folding, intersection and resulting hybridization of the Fermi-surface sheets. Our results on EuRh2Si2 indicate that the formation of the AFM state in YbRh2Si2 is very likely also connected with similar changes in the FS, which have to be taken into account in the controversial analysis and discussion of anomalies observed at the quantum critical point in this system.

7.
Phys Rev Lett ; 121(15): 157004, 2018 Oct 12.
Article in English | MEDLINE | ID: mdl-30362806

ABSTRACT

Nuclear magnetic resonance measurements were performed on CeCu_{2}Si_{2} in the presence of a magnetic field close to the upper critical field µ_{0}H_{c2} in order to investigate its superconducting (SC) properties near pair-breaking fields. In lower fields, the Knight shift and nuclear spin-lattice relaxation rate divided by temperature 1/T_{1}T abruptly decreased below the SC transition temperature T_{c}(H), a phenomenon understood within the framework of conventional spin-singlet superconductivity. In contrast, 1/T_{1}T was enhanced just below T_{c}(H) and exhibited a broad maximum when magnetic fields close to µ_{0}H_{c2}(0) were applied parallel or perpendicular to the c axis; although the Knight shift decreased just below T_{c}(H). This enhancement of 1/T_{1}T, which was recently observed in the organic superconductor κ-(BEDT-TTF)_{2}Cu(NCS)_{2}, suggests the presence of high-density Andreev bound states in the inhomogeneous SC region, a hallmark of the Fulde-Ferrell-Larkin-Ovchinnikov phase.

8.
Nat Commun ; 9(1): 3324, 2018 08 20.
Article in English | MEDLINE | ID: mdl-30127442

ABSTRACT

Strong electron correlations can give rise to extraordinary properties of metals with renormalized Landau quasiparticles. Near a quantum critical point, these quasiparticles can be destroyed and non-Fermi liquid behavior ensues. YbRh2Si2 is a prototypical correlated metal exhibiting the formation of quasiparticle and Kondo lattice coherence, as well as quasiparticle destruction at a field-induced quantum critical point. Here we show how, upon lowering the temperature, Kondo lattice coherence develops at zero field and finally gives way to non-Fermi liquid electronic excitations. By measuring the single-particle excitations through scanning tunneling spectroscopy, we find the Kondo lattice peak displays a non-trivial temperature dependence with a strong increase around 3.3 K. At 0.3 K and with applied magnetic field, the width of this peak is minimized in the quantum critical regime. Our results demonstrate that the lattice Kondo correlations have to be sufficiently developed before quantum criticality can set in.

9.
Nat Commun ; 9(1): 2011, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29789552

ABSTRACT

The Kondo model predicts that both the valence at low temperatures and its temperature dependence scale with the characteristic energy TK of the Kondo interaction. Here, we study the evolution of the 4f occupancy with temperature in a series of Yb Kondo lattices using resonant X-ray emission spectroscopy. In agreement with simple theoretical models, we observe a scaling between the valence at low temperature and TK obtained from thermodynamic measurements. In contrast, the temperature scale Tv at which the valence increases with temperature is almost the same in all investigated materials while the Kondo temperatures differ by almost four orders of magnitude. This observation is in remarkable contradiction to both naive expectation and precise theoretical predictions of the Kondo model, asking for further theoretical work in order to explain our findings. Our data exclude the presence of a quantum critical valence transition in YbRh2Si2.

10.
Phys Rev Lett ; 119(7): 077001, 2017 Aug 18.
Article in English | MEDLINE | ID: mdl-28949698

ABSTRACT

A key aspect of unconventional pairing by the antiferromagnetic spin-fluctuation mechanism is that the superconducting energy gap must have the opposite sign on different parts of the Fermi surface. Recent observations of non-nodal gap structure in the heavy-fermion superconductor CeCu_{2}Si_{2} were then very surprising, given that this material has long been considered a prototypical example of a superconductor where the Cooper pairing is magnetically mediated. Here we present a study of the effect of controlled point defects, introduced by electron irradiation, on the temperature-dependent magnetic penetration depth λ(T) in CeCu_{2}Si_{2}. We find that the fully gapped state is robust against disorder, demonstrating that low-energy bound states, expected for sign-changing gap structures, are not induced by nonmagnetic impurities. This provides bulk evidence for s_{++}-wave superconductivity without sign reversal.

11.
Sci Rep ; 7(1): 7338, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28779079

ABSTRACT

We investigated the anisotropic magnetic properties of CePd2As2 by magnetic, thermal and electrical transport studies. X-ray diffraction confirmed the tetragonal ThCr2Si2-type structure and the high-quality of the single crystals. Magnetisation and magnetic susceptibility data taken along the different crystallographic directions evidence a huge crystalline electric field (CEF) induced Ising-type magneto-crystalline anisotropy with a large c-axis moment and a small in-plane moment at low temperature. A detailed CEF analysis based on the magnetic susceptibility data indicates an almost pure |±5/2〉 CEF ground-state doublet with the dominantly |±3/2〉 and the |±1/2〉 doublets at 290 K and 330 K, respectively. At low temperature, we observe a uniaxial antiferromagnetic (AFM) transition at T N = 14.7 K with the crystallographic c-direction being the magnetic easy-axis. The magnetic entropy gain up to T N reaches almost R ln 2 indicating localised 4 f-electron magnetism without significant Kondo-type interactions. Below T N , the application of a magnetic field along the c-axis induces a metamagnetic transition from the AFM to a field-polarised phase at µ 0 H c0 = 0.95 T, exhibiting a text-book example of a spin-flip transition as anticipated for an Ising-type AFM.

12.
J Phys Condens Matter ; 28(34): 346003, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27357448

ABSTRACT

We report a detailed study of the magnetic properties of CeCo0.85Fe0.15Si under high magnetic fields (up to 16 Tesla) measuring different physical properties such as specific heat, magnetization, electrical resistivity, thermal expansion and magnetostriction. CeCo0.85Fe0.15Si becomes antiferromagnetic at [Formula: see text] K. However, a broad tail (onset at [Formula: see text] K) in the specific heat precedes that second order transition. This tail is also observed in the temperature derivative of the resistivity. However, it is particularly noticeable in the thermal expansion coefficient where it takes the form of a large bump centered at T X . A high magnetic field practically washes out that tail in the resistivity. But surprisingly, the bump in the thermal expansion coefficient becomes a well pronounced peak fully split from the magnetic transition at T N . Concurrently, the magnetoresistance also switches from negative to positive above T N . The magnetostriction is considerable and irreversible at low temperature ([Formula: see text] at 2 K) when the magnetic interactions dominate. A broad jump in the field dependence of the magnetostriction observed at low T may be the signature of a weak ongoing metamagnetic transition. Taking altogether the results indicate the importance of the lattice effects on the development of the magnetic order in these alloys.

13.
Sci Rep ; 6: 24254, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27052006

ABSTRACT

Spin-polarized two-dimensional electron states (2DESs) at surfaces and interfaces of magnetically active materials attract immense interest because of the idea of exploiting fermion spins rather than charge in next generation electronics. Applying angle-resolved photoelectron spectroscopy, we show that the silicon surface of GdRh2Si2 bears two distinct 2DESs, one being a Shockley surface state, and the other a Dirac surface resonance. Both are subject to strong exchange interaction with the ordered 4f-moments lying underneath the Si-Rh-Si trilayer. The spin degeneracy of the Shockley state breaks down below ~90 K, and the splitting of the resulting subbands saturates upon cooling at values as high as ~185 meV. The spin splitting of the Dirac state becomes clearly visible around ~60 K, reaching a maximum of ~70 meV. An abrupt increase of surface magnetization at around the same temperature suggests that the Dirac state contributes significantly to the magnetic properties at the Si surface. We also show the possibility to tune the properties of 2DESs by depositing alkali metal atoms. The unique temperature-dependent ferromagnetic properties of the Si-terminated surface in GdRh2Si2 could be exploited when combined with functional adlayers deposited on top for which novel phenomena related to magnetism can be anticipated.

14.
J Phys Condens Matter ; 28(16): 166001, 2016 Apr 27.
Article in English | MEDLINE | ID: mdl-26988385

ABSTRACT

Unusual phases and phase transitions are seen at the magnetic-nonmagnetic boundary in Ce-, Eu- and Yb-based compounds. EuNi2P2 is a very unusual valence fluctuating Eu system, because at low temperatures the Eu valence stays close to 2.5 instead of approaching an integer value. The Eu valence, and thus the magnetic property in this system, can be tuned by Ge substitution in the P site as EuNi2Ge2 is known to exhibit the antiferromagnetc (AFM) ordering of divalent Eu moments with T(N)=30K. We have grown EuNi2(P(1-x)Ge(x))2 (0.0≤ x ≤0.5)) single crystals and studied their magnetic, thermodynamic and transport properties. Increasing Ge doping to x > 0.4 results in a well-defined AFM ordered state with T(N)=12K for x = 0.5. Moreover, the reduced value of magnetic entropy for x = 0.5 at T(N) suggests the presence of valance fluctuation/the Kondo effect in this compound. Interestingly, the specific heat exhibits an enhanced Sommerfeld coefficient upon Ge doping. Subsequently, electronic structure calculations lead to a non-integral valence in EuNi2P2 but a stable divalent Eu state in EuNi2Ge2, which is in good agreement with the experimental results.

15.
Nat Commun ; 7: 11029, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26987899

ABSTRACT

The hybridization between localized 4f electrons and itinerant electrons in rare-earth-based materials gives rise to their exotic properties like valence fluctuations, Kondo behaviour, heavy-fermions, or unconventional superconductivity. Here we present an angle-resolved photoemission spectroscopy (ARPES) study of the Kondo lattice antiferromagnet CeRh2Si2, where the surface and bulk Ce-4f spectral responses were clearly resolved. The pronounced 4f (0) peak seen for the Ce terminated surface gets strongly suppressed in the bulk Ce-4f spectra taken from a Si-terminated crystal due to much larger f-d hybridization. Most interestingly, the bulk Ce-4f spectra reveal a fine structure near the Fermi edge reflecting the crystal electric field splitting of the bulk magnetic 4f (1)5/2 state. This structure presents a clear dispersion upon crossing valence states, providing direct evidence of f-d hybridization. Our findings give precise insight into f-d hybridization penomena and highlight their importance in the antiferromagnetic phases of Kondo lattices.

16.
J Phys Condens Matter ; 27(1): 016004, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25493957

ABSTRACT

A Muon spin relaxation (µSR) study has been performed on the Kondo lattice heavy fermion itinerant ferromagnet CeCrGe3. Recent investigations of bulk properties have revealed a long-range ordering of Cr moments at Tc = 70 K in this compound. Our µSR investigation between 1.2 K and 125 K confirm the bulk magnetic order which is marked by a loss in initial asymmetry below 70 K accompanied with a sharp increase in the muon depolarization rate. Field dependent µSR spectra show that the internal field at the muon site is higher than 0.25 T apparently due to the ferromagnetic nature of ordering. The effect of Ti substitution on the magnetism in CeCrGe3 is presented. A systematic study has been made on polycrystalline CeCr(1-x)Ti(x)Ge3 (0 ⩽ x ⩽ 1) using magnetic susceptibility χ(T), isothermal magnetization M(H), specific heat C(T) and electrical resistivity ρ(T) measurements which clearly reveal that the substitution of Ti for Cr in CeCrGe3 strongly influences the exchange interaction and ferromagnetic ordering of Cr moments. The Cr moment ordering temperature is suppressed gradually with increasing Ti concentration up to x = 0.50 showing Tc = 7 K beyond which Ce moment ordering starts to dominate and a crossover between Cr and Ce moment ordering is observed with a Ce moment ordering Tc = 14 K for x = 1.0. The Kondo lattice behavior is evident from temperature dependence of ρ(T) in all CeCr(1-x)Ti(x)Ge3 samples.

17.
J Phys Condens Matter ; 26(48): 485002, 2014 Dec 03.
Article in English | MEDLINE | ID: mdl-25322667

ABSTRACT

We present the structural, magnetic, thermodynamic and transport properties of the two new compounds YbPt(2)Sn and YbPt(2)In. X-ray powder diffraction shows that they crystallize in different structure types, the hexagonal ZrPt(2)Al and the cubic Heusler type, respectively. Despite quite different lattice types, both compounds present very similar magnetic properties: a stable trivalent Yb(3+), no evidence for a sizeable Kondo interaction and very weak exchange interactions with a strength below 1 K as deduced from specific heat C(T). Broad anomalies in C(T) suggest short range magnetic ordering at about 250 mK and 180 mK for YbPt(2)Sn and YbPt(2)In, respectively. The weak exchange and the low ordering temperature result in a large magnetocaloric effect as deduced from the magnetic field dependence of C(T), making these compounds interesting candidates for magnetic cooling. In addition we found in YbPt(2)In evidences for a charge density wave transition at about 290 K. The occurrence of such transitions within several RET2X compound series (RE = rare earth, T = noble metal, X = In, Sn) is analyzed.

18.
J Phys Condens Matter ; 26(10): 106001, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24553355

ABSTRACT

Physical properties of polycrystalline CeCrGe3 and LaCrGe3 have been investigated by x-ray absorption spectroscopy, magnetic susceptibility χ(T), isothermal magnetization M(H), electrical resistivity ρ(T), specific heat C(T) and thermoelectric power S(T) measurements. These compounds are found to crystallize in the hexagonal perovskite structure (space group P63/mmc), as previously reported. The ρ(T), χ(T) and C(T) data confirm the bulk ferromagnetic ordering of itinerant Cr moments in LaCrGe3 and CeCrGe3 with TC = 90 K and 70 K respectively. In addition, a weak anomaly is also observed near 3 K in the C(T) data of CeCrGe3. The T dependences of ρ and finite values of Sommerfeld coefficient γ obtained from the specific heat measurements confirm that both the compounds are of metallic character. Further, the T dependence of ρ of CeCrGe3 reflects a Kondo lattice behavior. An enhanced γ of 130 mJ mol(-1) K(-2) together with the Kondo lattice behavior inferred from the ρ(T) establish CeCrGe3 as a moderate heavy fermion compound with a quasi-particle mass renormalization factor of ∼45.


Subject(s)
Cesium/chemistry , Chromium/chemistry , Elementary Particles , Germanium/chemistry , Magnets , Models, Chemical , Computer Simulation , Electric Impedance , Thermal Conductivity
19.
Nat Commun ; 5: 3171, 2014.
Article in English | MEDLINE | ID: mdl-24445395

ABSTRACT

Carrying a large, pure spin magnetic moment of 7 µB per atom in the half-filled 4f shell, divalent europium is an outstanding element for assembling novel magnetic devices in which a two-dimensional electron gas may be polarized due to exchange interaction with an underlying magnetically-active Eu layer. Here we show that the Si-Rh-Si surface trilayer of the antiferromagnet EuRh2Si2 bears a surface state, which exhibits an unexpected and large spin splitting controllable by temperature. The splitting sets in below ~32.5 K, well above the ordering temperature of the Eu 4f moments (~24.5 K) in the bulk, indicating a larger ordering temperature in the topmost Eu layers. The driving force for the itinerant ferromagnetism at the surface is the aforementioned exchange interaction. Such a splitting may also be induced into states of functional surface layers deposited onto the surface of EuRh2Si2 or similarly ordered magnetic materials with metallic or semiconducting properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...