Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 320(5878): 893-7, 2008 May 16.
Article in English | MEDLINE | ID: mdl-18487184

ABSTRACT

Increasing quantities of atmospheric anthropogenic fixed nitrogen entering the open ocean could account for up to about a third of the ocean's external (nonrecycled) nitrogen supply and up to approximately 3% of the annual new marine biological production, approximately 0.3 petagram of carbon per year. This input could account for the production of up to approximately 1.6 teragrams of nitrous oxide (N2O) per year. Although approximately 10% of the ocean's drawdown of atmospheric anthropogenic carbon dioxide may result from this atmospheric nitrogen fertilization, leading to a decrease in radiative forcing, up to about two-thirds of this amount may be offset by the increase in N2O emissions. The effects of increasing atmospheric nitrogen deposition are expected to continue to grow in the future.


Subject(s)
Atmosphere , Human Activities , Nitrogen , Reactive Nitrogen Species , Seawater , Carbon , Carbon Dioxide/metabolism , Ecosystem , Humans , Nitrogen/metabolism , Nitrogen Fixation , Oceans and Seas , Reactive Nitrogen Species/metabolism
2.
Trends Plant Sci ; 5(1): 12-7, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10637656

ABSTRACT

Phytoplankton respond to variations in light intensity as they are mixed through the water column. Changes in pigment content are characteristic of the relatively slow response of 'sun-shade' photoacclimation that occurs on timescales typical of mixing in the open ocean. In estuaries, the variations are much faster and induce correspondingly rapid changes in the activity (rather than abundance) of different components of the photosynthetic apparatus. These components modulate light harvesting and Calvin cycle activity, or protect the pigment bed from excess energy absorption. When the protective capacity is exceeded, photoinhibition occurs. All these mechanisms modulate the rate of photosynthesis in situ.


Subject(s)
Marine Biology , Photosynthesis/physiology , Phytoplankton/physiology , Water , Light , Motion , Oceans and Seas
3.
Plant Physiol ; 114(2): 615-622, 1997 Jun.
Article in English | MEDLINE | ID: mdl-12223732

ABSTRACT

Flavodoxin is a small electron-transfer protein capable of replacing ferredoxin during periods of Fe deficiency. When evaluating the suitability of flavodoxin as a diagnostic indicator for Fe limitation of phytoplankton growth, we examined its expression in two marine diatoms we cultured using trace-metal-buffered medium. Thalassio-sira weissflogii and Phaeodactylum tricornutum were cultured in ethylenediaminetetraacetic acid-buffered Sargasso Sea water containing from 10 to 1000 nM added Fe. Trace-metal-buffered cultures of each diatom maintained high growth rates across the entire range of Fe additions. Similarly, declines in chlorophyll/cell and in the ratio of photosystem II variable-to-maximum fluorescence were negligible (P. tricornutum) to moderate (T. weissflogii; 54% decline in chlorophyll/cell and 22% decrease in variable-to-maximum fluorescence). Moreover, only minor variations in photosynthetic parameters were observed across the range of additions. In contrast, flavodoxin was expressed to high levels in low-Fe cultures. Despite the inverse relationship between flavodoxin expression and Fe content of the medium, its expression was seemingly independent of any of the indicators of cell physiology that were assayed. It appears that flavodoxin is expressed as an early-stage response to Fe stress and that its accumulation need not be intimately connected to limitations imposed by Fe on the growth rate of these diatoms.

4.
Photosynth Res ; 39(3): 275-301, 1994 Mar.
Article in English | MEDLINE | ID: mdl-24311126

ABSTRACT

Iron supply has been suggested to influence phytoplankton biomass, growth rate and species composition, as well as primary productivity in both high and low NO3 (-) surface waters. Recent investigations in the equatorial Pacific suggest that no single factor regulates primary productivity. Rather, an interplay of bottom-up (i.e., ecophysiological) and top-down (i.e., ecological) factors appear to control species composition and growth rates. One goal of biological oceanography is to isolate the effects of single factors from this multiplicity of interactions, and to identify the factors with a disproportionate impact. Unfortunately, our tools, with several notable exceptions, have been largely inadequate to the task. In particular, the standard technique of nutrient addition bioassays cannot be undertaken without introducing artifacts. These so-called 'bottle effects' include reducing turbulence, isolating the enclosed sample from nutrient resupply and grazing, trapping the isolated sample at a fixed position within the water column and thus removing it from vertical movement through a light gradient, and exposing the sample to potentially stimulatory or inhibitory substances on the enclosure walls. The problem faced by all users of enrichment experiments is to separate the effects of controlled nutrient additions from uncontrolled changes in other environmental and ecological factors. To overcome these limitations, oceanographers have sought physiological or molecular indices to diagnose nutrient limitation in natural samples. These indices are often based on reductions in the abundance of photosynthetic and other catalysts, or on changes in the efficiency of these catalysts. Reductions in photosynthetic efficiency often accompany nutrient limitation either because of accumulation of damage, or impairment of the ability to synthesize fully functional macromolecular assemblages. Many catalysts involved in electron transfer and reductive biosyntheses contain iron, and the abundances of most of these catalysts decline under iron-limited conditions. Reductions of ferredoxin or cytochrome f content, nitrate assimilation rates, and dinitrogen fixation rates are amongst the diagnostics that have been used to infer iron limitation in some marine systems. An alternative approach to diagnosing iron-limitation uses molecules whose abundance increases in response to iron-limitation. These include cell surface iron-transport proteins, and the electron transfer protein flavodoxin which replaces the Fe-S protein ferredoxin in many Fe-deficient algae and cyanobacteria.

5.
Plant Physiol ; 100(2): 565-75, 1992 Oct.
Article in English | MEDLINE | ID: mdl-16653030

ABSTRACT

The role of iron in regulating light harvesting and photochemical energy conversion processes was examined in the marine unicellular chlorophyte Dunaliella tertiolecta and the marine diatom Phaeodactylum tricornutum. In both species, iron limitation led to a reduction in cellular chlorophyll concentrations, but an increase in the in vivo, chlorophyll-specific, optical absorption cross-sections. Moreover, the absorption cross-section of photosystem II, a measure of the photon target area of the traps, was higher in iron-limited cells and decreased rapidly following iron addition. Iron-limited cells exhibited reduced variable/maximum fluorescence ratios and a reduced fluorescence per unit absorption at all wave-lengths between 400 and 575 nm. Following iron addition, variable/maximum fluorescence ratios increased rapidly, reaching 90% of the maximum within 18 to 25 h. Thus, although more light was absorbed per unit of chlorophyll, iron limitation reduced the transfer efficiency of excitation energy in photosystem II. The half-time for the oxidation of primary electron acceptor of photosystem II, calculated from the kinetics of decay of variable maximum fluorescence, increased 2-fold under iron limitation. Quantitative analysis of western blots revealed that cytochrome f and subunit IV (the plastoquinone-docking protein) of the cytochrome b(6)/f complex were also significantly reduced by lack of iron; recovery from iron limitation was completely inhibited by either cycloheximide or chloramphenicol. The recovery of maximum photosynthetic energy conversion efficiency occurs in three stages: (a) a rapid (3-5 h) increase in electron transfer rates on the acceptor side of photosystem II correlated with de novo synthesis of the cytochrome b(6)/f complex; (b) an increase (10-15 h) in the quantum efficiency correlated with an increase in D1 accumulation; and (c) a slow (>18 h) increase in chlorophyll levels accompanied by an increase in the efficiency of energy transfer from the light-harvesting chlorophyll proteins to the reaction centers.

6.
Microb Ecol ; 17(1): 77-87, 1989 Jan.
Article in English | MEDLINE | ID: mdl-24197125

ABSTRACT

Dilution grazing experiments were conducted to determine growth and loss rates of glucose-metabolizing and total bacteria. Bacterial growth rates were low and losses to grazers negligible in samples collected from the Celtic Sea in June 1986. Growth and loss rates of glucose-metabolizing bacteria were higher than growth and loss rates of total bacteria in a sample collected from the North Sea in October 1986.

7.
Photosynth Res ; 16(3): 291-2, 1988 Jun.
Article in English | MEDLINE | ID: mdl-24429534
SELECTION OF CITATIONS
SEARCH DETAIL
...