Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Bacteriol ; 195(14): 3183-92, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23667233

ABSTRACT

All organisms require S-adenosylmethionine (SAM) as a methyl group donor and cofactor for various biologically important processes. However, certain obligate intracellular parasitic bacteria and also the amoeba symbiont Amoebophilus asiaticus have lost the capacity to synthesize this cofactor and hence rely on its uptake from host cells. Genome analyses revealed that A. asiaticus encodes a putative SAM transporter. The corresponding protein was functionally characterized in Escherichia coli: import studies demonstrated that it is specific for SAM and S-adenosylhomocysteine (SAH), the end product of methylation. SAM transport activity was shown to be highly dependent on the presence of a membrane potential, and by targeted analyses, we obtained direct evidence for a proton-driven SAM/SAH antiport mechanism. Sequence analyses suggest that SAM carriers from Rickettsiales might operate in a similar way, in contrast to chlamydial SAM transporters. SAM/SAH antiport is of high physiological importance, as it allows for compensation for the missing methylation cycle. The identification of a SAM transporter in A. asiaticus belonging to the Bacteroidetes phylum demonstrates that SAM transport is more widely spread than previously assumed and occurs in bacteria belonging to three different phyla (Proteobacteria, Chlamydiae, and Bacteroidetes).


Subject(s)
Antiporters/metabolism , Bacteroidetes/metabolism , S-Adenosylmethionine/metabolism , Antiporters/genetics , Bacteroidetes/genetics , Cloning, Molecular , Computational Biology , Escherichia coli/genetics , Escherichia coli/metabolism , S-Adenosylhomocysteine/metabolism , Substrate Specificity
2.
Plant Cell ; 24(10): 4187-204, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23085732

ABSTRACT

3'-Phosphoadenosine 5'-phosphosulfate (PAPS) is the high-energy sulfate donor for sulfation reactions. Plants produce some PAPS in the cytosol, but it is predominantly produced in plastids. Accordingly, PAPS has to be provided by plastids to serve as a substrate for sulfotransferase reactions in the cytosol and the Golgi apparatus. We present several lines of evidence that the recently described Arabidopsis thaliana thylakoid ADP/ATP carrier TAAC transports PAPS across the plastid envelope and thus fulfills an additional function of high physiological relevance. Transport studies using the recombinant protein revealed that it favors PAPS, 3'-phosphoadenosine 5'-phosphate, and ATP as substrates; thus, we named it PAPST1. The protein could be detected both in the plastid envelope membrane and in thylakoids, and it is present in plastids of autotrophic and heterotrophic tissues. TAAC/PAPST1 belongs to the mitochondrial carrier family in contrast with the known animal PAPS transporters, which are members of the nucleotide-sugar transporter family. The expression of the PAPST1 gene is regulated by the same MYB transcription factors also regulating the biosynthesis of sulfated secondary metabolites, glucosinolates. Molecular and physiological analyses of papst1 mutant plants indicate that PAPST1 is involved in several aspects of sulfur metabolism, including the biosynthesis of thiols, glucosinolates, and phytosulfokines.


Subject(s)
Antiporters/physiology , Arabidopsis Proteins/physiology , Arabidopsis/metabolism , Cytosol/metabolism , Phosphoadenosine Phosphosulfate/metabolism , Thylakoids/metabolism , Antiporters/genetics , Antiporters/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Biological Transport , Phosphoadenosine Phosphosulfate/biosynthesis , Plastids/metabolism
3.
J Mol Biol ; 423(4): 590-9, 2012 Nov 02.
Article in English | MEDLINE | ID: mdl-22846909

ABSTRACT

Oxa1 serves as a protein insertase of the mitochondrial inner membrane that is evolutionary related to the bacterial YidC insertase. Its activity is critical for membrane integration of mitochondrial translation products and conservatively sorted inner membrane proteins after their passage through the matrix. All Oxa1 substrates identified thus far have bacterial homologs and are of endosymbiotic origin. Here, we show that Oxa1 is critical for the biogenesis of members of the mitochondrial carrier proteins. Deletion mutants lacking Oxa1 show reduced steady-state levels and activities of the mitochondrial ATP/ADP carrier protein Aac2. To reduce the risk of indirect effects, we generated a novel temperature-sensitive oxa1 mutant that allows rapid depletion of a mutated Oxa1 variant in situ by mitochondrial proteolysis. Oxa1-depleted mitochondria isolated from this mutant still contain normal levels of the membrane potential and of respiratory chain complexes. Nevertheless, in vitro import experiments showed severely reduced import rates of Aac2 and other members of the carrier family, whereas the import of matrix proteins was unaffected. From this, we conclude that Oxa1 is directly or indirectly required for efficient biogenesis of carrier proteins. This was unexpected, since carrier proteins are inserted into the inner membrane from the intermembrane space side and lack bacterial homologs. Our observations suggest that the function of Oxa1 is relevant not only for the biogenesis of conserved mitochondrial components such as respiratory chain complexes or ABC transporters but also for mitochondria-specific membrane proteins of eukaryotic origin.


Subject(s)
Electron Transport Complex IV/metabolism , Mitochondria/metabolism , Mitochondrial ADP, ATP Translocases/metabolism , Mitochondrial Proteins/metabolism , Nuclear Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Biological Transport , Carrier Proteins/metabolism , Electron Transport Complex IV/chemistry , Electron Transport Complex IV/genetics , Membrane Potential, Mitochondrial/genetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Mitochondria/genetics , Mitochondrial Membranes/enzymology , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Neurospora crassa/genetics , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...