Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Methods ; 11(2): 175-82, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24390440

ABSTRACT

The quality of genetically encoded calcium indicators (GECIs) has improved dramatically in recent years, but high-performing ratiometric indicators are still rare. Here we describe a series of fluorescence resonance energy transfer (FRET)-based calcium biosensors with a reduced number of calcium binding sites per sensor. These 'Twitch' sensors are based on the C-terminal domain of Opsanus troponin C. Their FRET responses were optimized by a large-scale functional screen in bacterial colonies, refined by a secondary screen in rat hippocampal neuron cultures. We tested the in vivo performance of the most sensitive variants in the brain and lymph nodes of mice. The sensitivity of the Twitch sensors matched that of synthetic calcium dyes and allowed visualization of tonic action potential firing in neurons and high resolution functional tracking of T lymphocytes. Given their ratiometric readout, their brightness, large dynamic range and linear response properties, Twitch sensors represent versatile tools for neuroscience and immunology.


Subject(s)
Biosensing Techniques/methods , Calcium/metabolism , Hippocampus/metabolism , Luminescent Proteins/metabolism , Neurons/metabolism , T-Lymphocytes/metabolism , Troponin C/metabolism , Animals , Animals, Newborn , Fluorescence Resonance Energy Transfer , Fluorescent Dyes , HEK293 Cells , Humans , Image Processing, Computer-Assisted , Lymphocyte Activation , Magnetic Resonance Spectroscopy , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Molecular Sequence Data , Neurons/cytology , Rats , T-Lymphocytes/cytology
2.
Biophys J ; 102(10): 2401-10, 2012 May 16.
Article in English | MEDLINE | ID: mdl-22677394

ABSTRACT

Genetically encoded calcium indicators have become instrumental in imaging signaling in complex tissues and neuronal circuits in vivo. Despite their importance, structure-function relationships of these sensors often remain largely uncharacterized due to their artificial and multimodular composition. Here, we describe a combination of protein engineering and kinetic, spectroscopic, and biophysical analysis of the Förster resonance energy transfer (FRET)-based calcium biosensor TN-XXL. Using fluorescence spectroscopy of engineered tyrosines, we show that two of the four calcium binding EF-hands dominate the FRET output of TN-XXL and that local conformational changes of these hands match the kinetics of FRET change. Using small-angle x-ray scattering and NMR spectroscopy, we show that TN-XXL changes from a flexible elongated to a rigid globular shape upon binding calcium, thus resulting in FRET signal output. Furthermore, we compare calcium titrations using fluorescence lifetime spectroscopy with the ratiometric approach and investigate potential non-FRET effects that may affect the fluorophores. Thus, our data characterize the biophysics of TN-XXL in detail and may form a basis for further rational engineering of FRET-based biosensors.


Subject(s)
Biosensing Techniques/methods , Calcium/metabolism , Fluorescence Resonance Energy Transfer/methods , Troponin C/chemistry , Amino Acid Substitution , Animals , Chickens , Electrophoresis, Polyacrylamide Gel , Hydrodynamics , Hydrogen-Ion Concentration , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Conformation , Protein Structure, Tertiary , Temperature , Tyrosine/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...