Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 2693, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29426917

ABSTRACT

Focal adhesions (FAs) are multi-protein complexes that connect the actin cytoskeleton to the extracellular matrix, via integrin receptors. The growth, stability and adhesive functionality of these structures are tightly regulated by mechanical stress, yet, despite the extensive characterization of the integrin adhesome, the detailed molecular mechanisms underlying FA mechanosensitivity are still unclear. Besides talin, another key candidate for regulating FA-associated mechanosensing, is vinculin, a prominent FA component, which possesses either closed ("auto-inhibited") or open ("active") conformation. A direct experimental demonstration, however, of the conformational transition between the two states is still absent. In this study, we combined multiple structural and biological approaches to probe the transition from the auto-inhibited to the active conformation, and determine its effects on FA structure and dynamics. We further show that the transition from a closed to an open conformation requires two sequential steps that can differentially regulate FA growth and stability.


Subject(s)
Focal Adhesions/physiology , Focal Adhesions/ultrastructure , Vinculin/metabolism , Actin Cytoskeleton/metabolism , Actins/metabolism , Animals , Cell Adhesion/physiology , Extracellular Matrix/metabolism , Fibroblasts , Focal Adhesions/metabolism , HeLa Cells , Humans , Integrins/metabolism , Mice , Molecular Conformation , Protein Binding/physiology , Talin/metabolism , Vinculin/chemistry , Vinculin/physiology , Vinculin/ultrastructure
3.
J Cell Biol ; 179(5): 1043-57, 2007 Dec 03.
Article in English | MEDLINE | ID: mdl-18056416

ABSTRACT

Focal adhesions (FAs) regulate cell migration. Vinculin, with its many potential binding partners, can interconnect signals in FAs. Despite the well-characterized structure of vinculin, the molecular mechanisms underlying its action have remained unclear. Here, using vinculin mutants, we separate the vinculin head and tail regions into distinct functional domains. We show that the vinculin head regulates integrin dynamics and clustering and the tail regulates the link to the mechanotransduction force machinery. The expression of vinculin constructs with unmasked binding sites in the head and tail regions induces dramatic FA growth, which is mediated by their direct interaction with talin. This interaction leads to clustering of activated integrin and an increase in integrin residency time in FAs. Surprisingly, paxillin recruitment, induced by active vinculin constructs, occurs independently of its potential binding site in the vinculin tail. The vinculin tail, however, is responsible for the functional link of FAs to the actin cytoskeleton. We propose a new model that explains how vinculin orchestrates FAs.


Subject(s)
Actins/metabolism , Focal Adhesions/metabolism , Talin/metabolism , Vinculin/metabolism , Actomyosin/metabolism , Animals , Cell Adhesion , Cytoskeleton/metabolism , HeLa Cells , Humans , Integrins/metabolism , Mice , Paxillin/metabolism , Protein Binding , Protein Structure, Tertiary , Protein Transport , Signal Transduction , Time Factors
4.
PLoS One ; 2(1): e179, 2007 Jan 31.
Article in English | MEDLINE | ID: mdl-17264882

ABSTRACT

BACKGROUND: Osteoclasts are bone-degrading cells, which play a central role in physiological bone remodeling. Unbalanced osteoclast activity is largely responsible for pathological conditions such as osteoporosis. Osteoclasts develop specialized adhesion structures, the so-called podosomes, which subsequently undergo dramatic reorganization into sealing zones. These ring-like adhesion structures, which delimit the resorption site, effectively seal the cell to the substrate forming a diffusion barrier. The structural integrity of the sealing zone is essential for the cell ability to degrade bone, yet its structural organization is poorly understood. PRINCIPAL FINDINGS: Combining high-resolution scanning electron microscopy with fluorescence microscopy performed on the same sample, we mapped the molecular architecture of the osteoclast resorptive apparatus from individual podosomes to the sealing zone, at an unprecedented resolution. Podosomes are composed of an actin-bundle core, flanked by a ring containing adhesion proteins connected to the core via dome-like radial actin fibers. The sealing zone, hallmark of bone-resorbing osteoclasts, consists of a dense array of podosomes communicating through a network of actin filaments, parallel to the substrate and anchored to the adhesive plaque domain via radial actin fibers. SIGNIFICANCE: The sealing zone of osteoclasts cultured on bone is made of structural units clearly related to individual podosomes. It differs from individual or clustered podosomes in the higher density and degree of inter-connectivity of its building blocks, thus forming a unique continuous functional structure connecting the cell to its extracellular milieu. Through this continuous structure, signals reporting on the substrate condition may be transmitted to the whole cell, modulating the cell response under physiological and pathological conditions.


Subject(s)
Cell Adhesion/physiology , Cell Surface Extensions/ultrastructure , Osteoclasts , Actins/genetics , Actins/metabolism , Animals , Cell Surface Extensions/metabolism , Cells, Cultured , Cytoskeleton/metabolism , Cytoskeleton/ultrastructure , Immunohistochemistry , Mice , Microscopy, Electron, Scanning , Osteoclasts/cytology , Osteoclasts/physiology , Paxillin/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...