Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-35682517

ABSTRACT

In this paper, the authors investigated changes in mass concentrations of particulate matter (PM) during the Coronavirus Disease of 2019 (COVID-19) lockdown. Daily samples of PM1, PM2.5 and PM10 fractions were measured at an urban background sampling site in Zagreb, Croatia from 2009 to late 2020. For the purpose of meteorological normalization, the mass concentrations were fed alongside meteorological and temporal data to Random Forest (RF) and LightGBM (LGB) models tuned by Bayesian optimization. The models' predictions were subsequently de-weathered by meteorological normalization using repeated random resampling of all predictive variables except the trend variable. Three pollution periods in 2020 were examined in detail: January and February, as pre-lockdown, the month of April as the lockdown period, as well as June and July as the "new normal". An evaluation using normalized mass concentrations of particulate matter and Analysis of variance (ANOVA) was conducted. The results showed that no significant differences were observed for PM1, PM2.5 and PM10 in April 2020-compared to the same period in 2018 and 2019. No significant changes were observed for the "new normal" as well. The results thus indicate that a reduction in mobility during COVID-19 lockdown in Zagreb, Croatia, did not significantly affect particulate matter concentration in the long-term..


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , Bayes Theorem , COVID-19/epidemiology , Cities , Communicable Disease Control , Croatia/epidemiology , Environmental Monitoring/methods , Humans , Machine Learning , Particulate Matter/analysis
2.
Sensors (Basel) ; 22(11)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35684856

ABSTRACT

An optimal control of the combustion process of an engine ensures lower emissions and fuel consumption plus high efficiencies. Combustion parameters such as the peak firing pressure (PFP) and the crank angle (CA) corresponding to 50% of mass fraction burned (MFB50) are essential for a closed-loop control strategy. These parameters are based on the measured in-cylinder pressure that is typically gained by intrusive pressure sensors (PSs). These are costly and their durability is uncertain. To overcome these issues, the potential of using a virtual sensor based on the vibration signals acquired by a knock sensor (KS) for control of the combustion process is investigated. The present work introduces a data-driven approach where a signal-processing technique, designated as discrete wavelet transform (DWT), will be used as the preprocessing step for extracting informative features to perform regression tasks of the selected combustion parameters with extreme gradient boosting (XGBoost) regression models. The presented methodology will be applied to data from two different spark-ignited, single cylinder gas engines. Finally, an analysis is obtained where the important features based on the model's decisions are identified.

3.
IEEE Trans Neural Netw Learn Syst ; 33(12): 7842-7852, 2022 12.
Article in English | MEDLINE | ID: mdl-34191732

ABSTRACT

In this work, we investigate the use of three information-theoretic quantities-entropy, mutual information with the class variable, and a class selectivity measure based on Kullback-Leibler (KL) divergence-to understand and study the behavior of already trained fully connected feedforward neural networks (NNs). We analyze the connection between these information-theoretic quantities and classification performance on the test set by cumulatively ablating neurons in networks trained on MNIST, FashionMNIST, and CIFAR-10. Our results parallel those recently published by Morcos et al., indicating that class selectivity is not a good indicator for classification performance. However, looking at individual layers separately, both mutual information and class selectivity are positively correlated with classification performance, at least for networks with ReLU activation functions. We provide explanations for this phenomenon and conclude that it is ill-advised to compare the proposed information-theoretic quantities across layers. Furthermore, we show that cumulative ablation of neurons with ascending or descending information-theoretic quantities can be used to formulate hypotheses regarding the joint behavior of multiple neurons, such as redundancy and synergy, with comparably low computational cost. We also draw connections to the information bottleneck theory for NNs.


Subject(s)
Information Theory , Neural Networks, Computer , Neurons/physiology , Entropy
4.
IEEE Trans Neural Netw Learn Syst ; 33(12): 7039-7051, 2022 12.
Article in English | MEDLINE | ID: mdl-34191733

ABSTRACT

We review the current literature concerned with information plane (IP) analyses of neural network (NN) classifiers. While the underlying information bottleneck theory and the claim that information-theoretic compression is causally linked to generalization are plausible, empirical evidence was found to be both supporting and conflicting. We review this evidence together with a detailed analysis of how the respective information quantities were estimated. Our survey suggests that compression visualized in IPs is not necessarily information-theoretic but is rather often compatible with geometric compression of the latent representations. This insight gives the IP a renewed justification. Aside from this, we shed light on the problem of estimating mutual information in deterministic NNs and its consequences. Specifically, we argue that, even in feedforward NNs, the data processing inequality needs not to hold for estimates of mutual information. Similarly, while a fitting phase, in which the mutual information is between the latent representation and the target increases, is necessary (but not sufficient) for good classification performance, depending on the specifics of mutual information estimation, such a fitting phase needs to not be visible in the IP.


Subject(s)
Data Compression , Neural Networks, Computer , Information Theory
5.
Entropy (Basel) ; 23(6)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34205211

ABSTRACT

Information plane analysis, describing the mutual information between the input and a hidden layer and between a hidden layer and the target over time, has recently been proposed to analyze the training of neural networks. Since the activations of a hidden layer are typically continuous-valued, this mutual information cannot be computed analytically and must thus be estimated, resulting in apparently inconsistent or even contradicting results in the literature. The goal of this paper is to demonstrate how information plane analysis can still be a valuable tool for analyzing neural network training. To this end, we complement the prevailing binning estimator for mutual information with a geometric interpretation. With this geometric interpretation in mind, we evaluate the impact of regularization and interpret phenomena such as underfitting and overfitting. In addition, we investigate neural network learning in the presence of noisy data and noisy labels.

6.
Sci Rep ; 11(1): 11547, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34078986

ABSTRACT

Automated construction of location graphs is instrumental but challenging, particularly in logistics optimisation problems and agent-based movement simulations. Hence, we propose an algorithm for automated construction of location graphs, in which vertices correspond to geographic locations of interest and edges to direct travelling routes between them. Our approach involves two steps. In the first step, we use a routing service to compute distances between all pairs of L locations, resulting in a complete graph. In the second step, we prune this graph by removing edges corresponding to indirect routes, identified using the triangle inequality. The computational complexity of this second step is [Formula: see text], which enables the computation of location graphs for all towns and cities on the road network of an entire continent. To illustrate the utility of our algorithm in an application, we constructed location graphs for four regions of different size and road infrastructures and compared them to manually created ground truths. Our algorithm simultaneously achieved precision and recall values around 0.9 for a wide range of the single hyperparameter, suggesting that it is a valid approach to create large location graphs for which a manual creation is infeasible.

7.
IEEE Trans Neural Netw Learn Syst ; 32(9): 3930-3941, 2021 Sep.
Article in English | MEDLINE | ID: mdl-32845846

ABSTRACT

We propose a semi-supervised generative model, SeGMA, which learns a joint probability distribution of data and their classes and is implemented in a typical Wasserstein autoencoder framework. We choose a mixture of Gaussians as a target distribution in latent space, which provides a natural splitting of data into clusters. To connect Gaussian components with correct classes, we use a small amount of labeled data and a Gaussian classifier induced by the target distribution. SeGMA is optimized efficiently due to the use of the Cramer-Wold distance as a maximum mean discrepancy penalty, which yields a closed-form expression for a mixture of spherical Gaussian components and, thus, obviates the need of sampling. While SeGMA preserves all properties of its semi-supervised predecessors and achieves at least as good generative performance on standard benchmark data sets, it presents additional features: 1) interpolation between any pair of points in the latent space produces realistically looking samples; 2) combining the interpolation property with disentangling of class and style information, SeGMA is able to perform continuous style transfer from one class to another; and 3) it is possible to change the intensity of class characteristics in a data point by moving the latent representation of the data point away from specific Gaussian components.

8.
Entropy (Basel) ; 22(12)2020 Dec 14.
Article in English | MEDLINE | ID: mdl-33327417

ABSTRACT

The information bottleneck (IB) framework, proposed in [...].

9.
Entropy (Basel) ; 22(11)2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33286997

ABSTRACT

In this short note, we relate the variational bounds proposed in Alemi et al. (2017) and Fischer (2020) for the information bottleneck (IB) and the conditional entropy bottleneck (CEB) functional, respectively. Although the two functionals were shown to be equivalent, it was empirically observed that optimizing bounds on the CEB functional achieves better generalization performance and adversarial robustness than optimizing those on the IB functional. This work tries to shed light on this issue by showing that, in the most general setting, no ordering can be established between these variational bounds, while such an ordering can be enforced by restricting the feasible sets over which the optimizations take place. The absence of such an ordering in the general setup suggests that the variational bound on the CEB functional is either more amenable to optimization or a relevant cost function for optimization in its own regard, i.e., without justification from the IB or CEB functionals.

10.
IEEE Trans Pattern Anal Mach Intell ; 42(9): 2225-2239, 2020 09.
Article in English | MEDLINE | ID: mdl-30951462

ABSTRACT

In this theory paper, we investigate training deep neural networks (DNNs) for classification via minimizing the information bottleneck (IB) functional. We show that the resulting optimization problem suffers from two severe issues: First, for deterministic DNNs, either the IB functional is infinite for almost all values of network parameters, making the optimization problem ill-posed, or it is piecewise constant, hence not admitting gradient-based optimization methods. Second, the invariance of the IB functional under bijections prevents it from capturing properties of the learned representation that are desirable for classification, such as robustness and simplicity. We argue that these issues are partly resolved for stochastic DNNs, DNNs that include a (hard or soft) decision rule, or by replacing the IB functional with related, but more well-behaved cost functions. We conclude that recent successes reported about training DNNs using the IB framework must be attributed to such solutions. As a side effect, our results indicate limitations of the IB framework for the analysis of DNNs. We also note that rather than trying to repair the inherent problems in the IB functional, a better approach may be to design regularizers on latent representation enforcing the desired properties directly.

11.
Entropy (Basel) ; 20(1)2018 Jan 17.
Article in English | MEDLINE | ID: mdl-33265155

ABSTRACT

The generator matrices of polar codes and Reed-Muller codes are submatrices of the Kronecker product of a lower-triangular binary square matrix. For polar codes, the submatrix is generated by selecting rows according to their Bhattacharyya parameter, which is related to the error probability of sequential decoding. For Reed-Muller codes, the submatrix is generated by selecting rows according to their Hamming weight. In this work, we investigate the properties of the index sets selecting those rows, in the limit as the blocklength tends to infinity. We compute the Lebesgue measure and the Hausdorff dimension of these sets. We furthermore show that these sets are finely structured and self-similar in a well-defined sense, i.e., they have properties that are common to fractals.

SELECTION OF CITATIONS
SEARCH DETAIL
...