Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Photochem Photobiol ; 69(3): 375-81, 1999 Mar.
Article in English | MEDLINE | ID: mdl-10089831

ABSTRACT

Photodynamic therapy with 5-aminolevulinic acid (ALA) is based on metabolism of ALA to a photosensitizing agent, protoporphyrin IX (PpIX), in tumor cells. Photosensitivity of target cells may be influenced by mitochondrial iron levels because ferrochelatase-catalyzed insertion of Fe2+ into PpIX converts it to heme, a nonsensitizer. To investigate this prospect, we exposed L1210 cells (approximately 10(6)/mL in 1% serum-containing medium) to a lipophilic iron chelate, ferric-8-hydroxyquinoline (Fe[HQ]2, 0.5 microM), prior to treating with ALA (0.2 mM, 4 h) and irradiating with broadband visible light. When Fe(HQ)2 was added to cells immediately or 1 h before ALA, the initial rate of photokilling, as measured by thiazolyl blue (mitochondrial dehydrogenase) assay, was markedly less than that of non-iron controls. The HPLC analysis of cell extracts indicated that ALA-induced PpIX was at least 50% lower after this Fe(HQ)2 treatment, presumably explaining the drop in photolethality. By contrast, cells treated with ALA and light 20 h after being exposed to Fe(HQ)2 contained the same amount of PpIX as non-iron controls and were photoinactivated at nearly the same rate. The 20 h delayed cells contained approximately 12 times more immunodetectable ferritin heavy subunit than controls or 1 h counterparts, which could account for the disappearance of iron's antisensitization effects in the former. Consistent with this idea, the short-term effects of Fe(HQ)2 on ALA-induced sensitization were found to be blunted significantly in ferritin-enriched cells. The Fe(HQ)2 produced strikingly different results when cells were sensitized with exogenous PpIX, stimulating photokilling after short-term contact but inhibiting it after long-term contact while having no significant effect on the level of cell-associated PpIX in either case. Thus, iron can have diverse effects on PpIX-mediated photokilling, depending on contact time with cells and whether the porphyrin is metabolically derived or applied as such.


Subject(s)
Aminolevulinic Acid/therapeutic use , Leukemia L1210/drug therapy , Leukemia L1210/metabolism , Photochemotherapy , Protoporphyrins/metabolism , Aminolevulinic Acid/metabolism , Animals , Ferric Compounds/pharmacology , Hydroxyquinolines/pharmacology , Mice , Porphyrins/metabolism , Protoporphyrins/pharmacology , Tumor Cells, Cultured
2.
Methods Enzymol ; 300: 23-33, 1999.
Article in English | MEDLINE | ID: mdl-9919505

ABSTRACT

In addition to the applications described, HPLC-EC(Hg) can be used for determining LOOHs in lipoproteins and for monitoring LOOH detoxification in cells. As it continues to be developed and refined, this approach should prove to be valuable not only for ultrasensitive determination of lipid-derived peroxides, but protein- and nucleic acid-derived peroxided as well.


Subject(s)
Chromatography, High Pressure Liquid/methods , Electrochemistry/methods , Lipid Peroxides/analysis , Animals , Electrodes , Glutathione Peroxidase/analysis , Leukemia L1210 , Mercury , Oxidation-Reduction , Oxidative Stress , Phospholipid Hydroperoxide Glutathione Peroxidase
3.
Photochem Photobiol ; 68(2): 211-7, 1998 Aug.
Article in English | MEDLINE | ID: mdl-9723213

ABSTRACT

Hemin (ferriprotoporphyrin IX), the oxidized prosthetic group of hemoglobin, is a potential source of prooxidant iron in heavily vascularized tumors. We have evaluated hemin's effects on photodynamic inactivation of bovine artery endothelial cells, using a partially purified oligomeric fraction of hematoporphyrin derivative (HPD-A) as the sensitizing agent. Confluent cells in 5% serum/RPMI medium showed a progressive loss of thiazolyl blue (MTT)-detectable viability when irradiated with broadband visible light in the presence of HPD-A. Cells pretreated with desferrioxamine (DFO) were substantially less sensitive to photokilling, implying that non-heme iron plays a role in cytotoxic activity. Hemin (10-20 microM) had remarkably different effects on photokilling, depending on the time interval between adding it to cells and exposing them to photodynamic action. For example, cells were more sensitive when photostressed immediately after 1 h hemin treatment and washing but much more resistant when photostressed 23 h later. Similar responses were observed when cells were challenged with glucose oxidase. Immunoblot analysis following hemin treatment revealed a progressive induction of the heavy (H) subunit of ferritin that paralleled the development of hyperresistance. After incubation with saturating levels of the synthetic iron donor [55Fe]ferric-8-hydroxyquinoline, hemin-stimulated cells contained about four times more immunoprecipitable ferritin 55Fe than controls. This is consistent with the notion that sequestration of toxic iron as a result of induction of H-chain-enriched ferritin is a key factor in hyperresistance. Inflammatory injury in tumor vasculatures could expose endothelial and neoplastic cells to chronic hemoglobin-derived iron. Consequent upregulation of ferritin could impact negatively on the efficacy of photodynamic therapy and other oxidant-based cancer therapies.


Subject(s)
Endothelium, Vascular/drug effects , Hematoporphyrin Derivative/pharmacology , Photosensitizing Agents/pharmacology , Animals , Cattle , Cells, Cultured , Deferoxamine/pharmacology , Drug Resistance , Endothelium, Vascular/metabolism , Ferritins/metabolism , Hematoporphyrin Photoradiation , Hemin/pharmacology , Iron/metabolism , Photobiology
4.
Free Radic Biol Med ; 23(1): 57-68, 1997.
Article in English | MEDLINE | ID: mdl-9165297

ABSTRACT

Photodynamic action of merocyanine 540, an antileukemic sensitizing dye, on murine L1210 cells results in the formation of lipid hydroperoxides and loss of cell viability. High-performance liquid chromatography with mercury cathode electrochemical detection was used for determining lipid oxidation products, including the following cholesterol-derived hydroperoxides: 5 alpha-OOH, 6 alpha-OOH, 6 beta-OOH, and unresolved 7 alpha, 7 beta-OOH. Among these species, 5 alpha-, 6 alpha-, and 6 beta-OOH (singlet oxygen adducts) were predominant in the early stages of photooxidation, whereas 7 alpha- and 7 beta-OOH (products of free radical reactions) became so after prolonged irradiation or during dark incubation after exposure to a light dose. These mechanistic changes were studied in a unique way by monitoring shifts in the peroxide ratio, i.e., 7-OOH/5 alpha-OOH, or 7-OOH/6-OOH. When cells (10(7)/ml) were exposed to a visible light fluence of 0.6 J/cm2 in the presence of 10 microM merocyanine 540, 7-OOH/5 alpha-OOH increased by approximately 100% after 2 h of dark incubation at 37 degrees C. The increase was much larger (approximately 250%) when cells were photooxidized after treatment with 1 microM ferric-8-hydroxyquinoline, a lipophilic iron donor, whereas no increase was observed when cells were pretreated with 100 microM desferrioxamine, an avid iron chelator/redox inhibitor. Correspondingly, postirradiation formation of thiobarbituric acid-reactive material was markedly enhanced by ferric-8-hydroxyquinoline and suppressed by desferrioxamine, as was the extent of cell killing. When added to cells after a light dose, chain-breaking antioxidants such as butylated hydroxytoluene and alpha-tocopherol strongly protected against cell killing and slowed the increase in 7-OOH/5 alpha-OOH ratio. It is apparent from these results that (1) the 7-OOH/5 alpha-OOH or 7-OOH/6-OOH ratio can be used as a highly sensitive index of singlet oxygen vs. free radical dominance in photodynamically stressed cells; and (2) that postirradiation chain peroxidation plays an important role in photodynamically initiated cell killing.


Subject(s)
Cholesterol/analogs & derivatives , Light , Lipid Peroxidation , Photosensitizing Agents/pharmacology , Pyrimidinones/pharmacology , Animals , Butylated Hydroxytoluene/pharmacology , Cell Survival , Cholesterol/metabolism , Chromatography, High Pressure Liquid , Deferoxamine/pharmacology , Free Radicals/metabolism , Iron Compounds/pharmacology , Leukemia L1210 , Lipid Peroxides/metabolism , Mice , Reactive Oxygen Species/metabolism , Thiobarbituric Acid Reactive Substances/analysis , Tumor Cells, Cultured
5.
Biochemistry ; 35(26): 8670-9, 1996 Jul 02.
Article in English | MEDLINE | ID: mdl-8679629

ABSTRACT

Phospholipid hydroperoxide glutathione peroxidase (PHGPX) is a selenoenzyme that can catalyze the direct reduction of various membrane lipid hydroperoxides and by so doing could play a vital role in cytoprotection against peroxidative damage. The activity of purified testicular PHGPX on several photochemically-generated cholesterol hydroperoxide (ChOOH) species was investigated, using high-performance liquid chromatography with electrochemical detection for peroxide analysis and thinlayer chromatography with 14C-radiodetection for diol product analysis. The following ChOOH isomers were monitored: 5 alpha-OOH, 6 alpha-OOH, 6 beta-OOH (singlet oxygen adducts), and unresolved 7 alpha,7 beta-OOH (derived from 5 alpha-OOH rearrangement). Apparent first-order rate constants for GSH/PHGPX-induced peroxide loss (or diol accumulation) in Triton X-100 micelles, unilamellar liposomes, or erythrocyte ghost membranes increased in the following order: 5 alpha-OOH < 6 alpha-OOH approximately equal to 7 alpha,7 beta-OOH < 6beta-OOH. A similar trend was observed when the peroxides were incubated with Triton Iysates of Se-replete L1210 or K562 cells, implicating PHGPX in these reactions. Consistent with this, there was little or no ChOOH reduction if GSH was omitted or if lysates from Se-deprived cells were used. Liposomal 5 alpha-OOH was found to be much more cytotoxic than equimolar liposomal 6 beta-OOH, producing a 50% loss of L1210 clonogenicity at approximately 1/5 the concentration of the latter. Faster uptake of 5 alpha-OOH was ruled out as the basis for greater cytotoxicity, suggesting that relatively inefficient metabolism by the GSH/PHGPX system might be the reason. As supporting evidence, it was found that cells accumulate the diol reduction product of 5 alpha-OOH more slowly than that of 6 beta-OOH during incubation with the respective peroxides. Slow detoxification coupled with rapid formation makes 5 alpha-OOH potentially the most damaging ChOOH to arise in cells exposed to singlet oxygen.


Subject(s)
Cholesterol/analogs & derivatives , Animals , Catalysis , Cell Line , Cell Survival/drug effects , Cholesterol/metabolism , Cholesterol/toxicity , Glutathione Peroxidase/metabolism , Humans , Kinetics , Mice , Oxidation-Reduction , Oxygen , Phospholipid Hydroperoxide Glutathione Peroxidase , Singlet Oxygen
6.
Photochem Photobiol ; 62(3): 580-7, 1995 Sep.
Article in English | MEDLINE | ID: mdl-8570716

ABSTRACT

Singlet oxygen (1O2)-mediated photooxidation of cholesterol gives three hydroperoxide products: 3 beta-hydroxy-5 alpha-cholest-6-ene-5-hydroperoxide (5 alpha-OOH), 3 beta-hydroxycholest-4-ene-6 alpha-hydroperoxide (6 alpha-OOH) and 3 beta-hydroxycholest-4-ene-6 beta-hydroperoxide (6 beta-OOH). These species have been compared with respect to photogeneration rate on the one hand and susceptibility to enzymatic reduction/detoxification on the other, using the erythrocyte ghost as a cholesterol-containing test membrane and chloroaluminum phthalocyanine tetrasulfonate (AlPcS4) as a 1O2 sensitizer. Peroxide analysis was accomplished by high-performance liquid chromatography with mercury cathode electrochemical detection (HPLC-EC[Hg]). The initial rate of 5 alpha-OOH accumulation in AlPcS4/light-treated ghosts was found to be about three times greater than that of 6 alpha-OOH or 6 beta-OOH. Membranes irradiated in the presence of ascorbate and ferric-8-hydroxyquinoline (Fe[HQ]2, a lipophilic iron complex) accumulated lesser amounts of 5 alpha-OOH, 6 alpha-OOH and 6 beta-OOH but relatively large amounts of another peroxide pair, 3 beta-hydroxycholest-5-ene-7 alpha- and 7 beta-hydroperoxide (7 alpha, 7 beta-OOH), suggestive of iron-mediated free radical peroxidation. When photoperoxidized membranes containing 5 alpha-OOH, 6 alpha,6 beta-OOH and 7 alpha,7 beta-OOH (arising from 5 alpha-OOH rearrangement) were incubated with glutathione (GSH) and phospholipid hydroperoxide glutathione peroxidase (PHGPX), all hydroperoxide species underwent HPLC-EC(Hg)-detectable reduction to alcohols, the relative first order rate constants being as follows: 1.0 (5 alpha-OOH), 2.0 (7 alpha,7 beta-OOH), 2.4 (6 alpha-OOH) and 3.2 (6 beta-OOH).(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Cholesterol/analogs & derivatives , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/radiation effects , Animals , Cholesterol/metabolism , Cholesterol/toxicity , Erythrocyte Membrane/enzymology , Humans , Inactivation, Metabolic , Leukemia L1210/metabolism , Lipid Peroxides/metabolism , Lipid Peroxides/toxicity , Mice , Oxidation-Reduction , Photochemistry , Tumor Cells, Cultured
7.
J Chromatogr B Biomed Appl ; 670(2): 189-97, 1995 Aug 18.
Article in English | MEDLINE | ID: mdl-8548009

ABSTRACT

Lipid hydroperoxide species can be analyzed with high sensitivity and specificity, using reversed-phase high-performance liquid chromatography with reductive mode electrochemical detection on a mercury drop cathode [HPLC-ED(Hg)]. The purpose of this study was to examine different variables in the operation of HPLC-ED(Hg) and to select optimal conditions for the analysis of several biologically relevant peroxides, including species derived from cholesterol, cholesteryl linoleate, oleate, linoleate, and two synthetic phosphatidylcholines. Parameters such as operating potential and mobile-phase solvent proportions, electrolyte composition, and ionic strength were evaluated for each peroxide class. Under optimal conditions, we have achieved baseline separation of four cholesterol hydroperoxide species, not only from one another, but also from phospholipid hydroperoxides; detection limits were < 0.3 pmol and < 30 pmol for the cholesterol and phospholipid hydroperoxides, respectively.


Subject(s)
Lipid Peroxides/analysis , Animals , Calibration , Chromatography, High Pressure Liquid , Electrochemistry , Electrodes , Fatty Acids/analysis , Leukemia L1210/metabolism , Mercury , Mice , Photochemistry , Reproducibility of Results
8.
Biochim Biophys Acta ; 1267(1): 31-40, 1995 May 29.
Article in English | MEDLINE | ID: mdl-7779866

ABSTRACT

Murine leukemia L1210 cells rendered deficient in glutathione peroxidase (GPX) and phospholipid hydroperoxide glutathione peroxidase (PHGPX) by Se deprivation (L.Se(-) cells) were found to be more sensitive to tert-butyl hydroperoxide (t-BuOOH) cytotoxicity than Se-replete controls (L.Se(+) cells). Human K562 cells, which express PHGPX, but not GPX, were also more sensitive to t-BuOOH in the Se-deficient (K.Se(-)) than Se-satisfied (K.Se(+)) condition. In examining the metabolic basis for selenoperoxidase-dependent resistance, we found that glucose-replete Se(-) cells reduce t-BuOOH to t-butanol far more slowly than Se(+) cells, the ratio of the first-order rate constants approximating that of the GPX activities (L1210 cells) or PHGPX activities (K562 cells). Monitoring peroxide-induced changes in GSH and GSSG gave consistent results; e.g., glucose-depleted L.Se(+) cells exhibited a first order loss of GSH that was substantially faster than that of glucose-depleted L.Se(-) cells. Under the conditions used, peroxide-induced conversion of GSH to GSSG could be stoichiometrically reversed by resupplying D-glucose, indicating that no significant lysis or GSSG efflux and/or interchange had taken place. The apparent first-order rate constant for GSH decay increased progressively for L1210 cells expressing a range of GPX activities from approximately 5% to 100%, demonstrating that peroxide detoxification is strictly dependent on enzyme content. The initial rate of 14CO2 release from D-[1-14C]glucose supplied in the medium was much greater for L.Se(+) or K.Se(+) cells than for their respective Se(-) counterparts, consistent with greater hexose monophosphate shunt activity in the former. These results highlight the importance of selenoperoxidase action in the glutathione cycle as a means by which tumor cells cope with hydroperoxide stress.


Subject(s)
Glutathione Peroxidase/metabolism , Leukemia L1210/metabolism , Peroxides/pharmacology , Animals , Cell Line/drug effects , Glutathione/metabolism , Glutathione Peroxidase/deficiency , Humans , Kinetics , Mice , Oxidative Stress , Pentose Phosphate Pathway , Phospholipid Hydroperoxide Glutathione Peroxidase , Selenium/deficiency , Selenium/pharmacology , tert-Butylhydroperoxide
9.
J Lipid Res ; 34(3): 479-90, 1993 Mar.
Article in English | MEDLINE | ID: mdl-8468531

ABSTRACT

Oxidized low density lipoprotein (LDLox) is believed to be an important contributor to endothelial cytodamage and atherogenesis. The purpose of this study was to examine the role of glutathione (GSH) and GSH-dependent selenoperoxidases in cytoprotection against the damaging effects of LDLox. When irradiated in the presence of a phthalocyanine sensitizing dye, human LDL accumulated chromatographically detectable and iodometrically measurable lipid hydroperoxides (LOOHs). Photogenerated LDLox caused lethal damage to bovine aortic endothelial (BAE) cells in vitro, as determined by lactate dehydrogenase release and inhibition of thiazolyl blue reduction. When depleted of GSH by buthionine sulfoximine treatment, BAE cells became more sensitive to LDLox. Cells grown in 2% serum/DME-HAM's F-12 medium without added selenium [Se(-) cells] exhibited far lower GSH-peroxidase and phospholipid hydroperoxide GSH-peroxidase activities than selenium-supplemented controls [Se(+) cells], and were much more sensitive to oxidative injury induced by t-butyl hydroperoxide, liposomal cholesterol hydroperoxides, and LDLox. Preincubation of LDLox with GSH and Ebselen (a selenoperoxidase mimetic) resulted in a dramatic reduction in both LOOH content and cytotoxicity. Moreover, treating Se(-) cells themselves with Ebselen substantially restored their resistance to LDLox-induced damage. LDLox toxicity to Se(-) cells was strongly inhibited by desferrioxamine and stimulated by ferric-8-hydroxyquinoline (a lipophilic chelate), indicating that iron is an active participant in oxidative damage. These results demonstrate that the GSH-dependent selenoperoxidase(s) play(s) an important role in cellular defense against oxidized low density lipoprotein, presumably by detoxifying lipid hydroperoxides and thereby preventing their iron-catalyzed decomposition to damaging free radical intermediates.


Subject(s)
Endothelium, Vascular/drug effects , Glutathione Peroxidase/metabolism , Iron/metabolism , Lipid Peroxides/pharmacology , Lipoproteins, LDL/pharmacology , Selenium/pharmacology , Animals , Antioxidants/pharmacology , Aorta, Thoracic , Azoles/pharmacology , Buthionine Sulfoximine , Cattle , Cell Death/drug effects , Cells, Cultured , Endothelium, Vascular/metabolism , Glutathione/metabolism , Glutathione/pharmacology , Isoindoles , Lipid Peroxides/metabolism , Lipoproteins, LDL/metabolism , Methionine Sulfoximine/analogs & derivatives , Methionine Sulfoximine/pharmacology , Organoselenium Compounds/pharmacology , Oxidation-Reduction , Peroxides/metabolism , Phenols/pharmacology , Photochemistry , Selenium/administration & dosage , Selenium/physiology , tert-Butylhydroperoxide
10.
Free Radic Biol Med ; 14(3): 251-66, 1993 Mar.
Article in English | MEDLINE | ID: mdl-8458583

ABSTRACT

Murine leukemia L1210 cells grown for 5-7 d in the presence of 1% serum without added selenium [Se(-) cells] expressed < 5% of the glutathione peroxidase (GPX) activity of selenium-supplemented controls [Se(+) cells]. Clonogenic survival assays indicated that t-butyl hydroperoxide (t-BuOOH) is much more toxic to Se(-) cells (LC50 approximately 10 microM) than to Se(+) or selenium-repleted [Se(-/+)] cells (LC50 approximately 250 microM). Hypersensitivity of Se(-) cells to t-BuOOH was partially reversed by treating them with Ebselen, a selenoperoxidase mimetic; thus, selenoperoxidase insufficiency was probably the most serious defect of Se deprivation. Cytotoxicity of t-BuOOH was inhibited by desferrioxamine and by alpha-tocopherol, indicating that redox iron and free radical intermediates are involved. Elevated sensitivity of Se(-) cells to t-BuOOH was accompanied by an increased susceptibility to free radical lipid peroxidation, which became even more pronounced in cells that had been grown in arachidonate (20:4, n-6) supplemented media. That glutathione (GSH) is required for cytoprotection was established by showing that Se(+) cells are less resistant to t-BuOOH after exposure to buthionine sulfoximine (BSO), an inhibitor of GSH synthesis, or 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), an inhibitor of glutathione reductase. Coupled enzymatic assays indicated that Se(+) or Se(-/+) cells metabolize t-BuOOH 20-25 times more rapidly than Se(-), consistent with the measured difference in GPX activities of these cells. Correspondingly, when challenged with t-BuOOH, Se(+) cells showed an initial loss of GSH and elevation of GSSG that exceeded that of Se(-) cells. It was further shown that like Se(-) cells, BSO- or BCNU-treated Se(+) cells metabolize t-BuOOH more slowly than nontreated controls. These results clearly indicate that selenoperoxidase action in the glutathione cycle is a vital element in cellular defense against toxic hydroperoxides.


Subject(s)
Glutathione Peroxidase/metabolism , Peroxides/antagonists & inhibitors , Selenium/metabolism , Animals , Antioxidants/pharmacology , Azoles/pharmacology , Cell Survival/drug effects , Free Radicals/metabolism , Glutathione/deficiency , Glutathione/metabolism , Isoindoles , Leukemia L1210/metabolism , Lipid Peroxidation/drug effects , Mice , Organoselenium Compounds/pharmacology , Peroxides/toxicity , Selenium/deficiency , Selenium/pharmacology , Tumor Cells, Cultured/drug effects , Tumor Cells, Cultured/metabolism , tert-Butylhydroperoxide
11.
Cancer Res ; 52(19): 5282-90, 1992 Oct 01.
Article in English | MEDLINE | ID: mdl-1394132

ABSTRACT

Photodynamic therapy with the lipophilic sensitizing dye merocyanine 540 (MC540) is a promising new approach for extracorporeal purging of neoplastic cells from autologous remission bone marrow grafts. Resistance-conferring cellular defenses against the cytotoxic effects of MC540/photodynamic therapy have not been well characterized. This study focuses on the cytoprotective effects of the glutathione-dependent selenoperoxidases GPX and PHGPX, which can detoxify a wide variety of hydroperoxides, including lipid-derived species (LOOHs). Murine leukemia L1210 cells were grown in 1% serum media without [L.Se(-)] and with [L.Se(+)] selenium supplementation. L.Se(-) cells expressed 10- to 20-fold lower GPX and PHGPX activities than L.Se(+) controls and were markedly more sensitive to MC540-mediated photoperoxidation (LOOH formation) and clonally assessed photokilling. Susceptibility of L.Se(-) cells to photoperoxidation and photokilling could be fully reversed to L.Se(+) levels by replenishing Se, and partially reversed by treating with Ebselen, a selenoperoxidase mimetic. Altered lipid composition, greater uptake of MC540, and defective catabolism of H2O2 were all ruled out as possible factors in the elevated photosensitivity of L.Se(-) cells. Human leukemia K562 cells (capable of expressing PHGPX but not GPX) exhibited 5- to 10-fold lower PHGPX activity under Se-deficient relative to Se-sufficient conditions. Although MC540 uptake (nmol/mg lipid) by K562 and L1210 cells was essentially the same, the former were more resistant to photoinactivation. However, like murine counterparts, Se-deficient cells were more susceptible to photoperoxidation and photokilling than Se-sufficient controls. These results clearly demonstrate that GPX and/or PHGPX in L1210 cells and PHGPX in K562 cells play an important cytoprotective role during photooxidative stress. Whether membrane damage due to lipid photoperoxidation is causally related to cell death is not certain; however, the parallel effects of Se deficiency on LOOH formation and cell killing are at least consistent with this possibility.


Subject(s)
Glutathione Peroxidase/pharmacology , Leukemia L1210/enzymology , Leukemia, Experimental/enzymology , Lipid Peroxidation/drug effects , Photochemotherapy , Pyrimidinones/pharmacology , Radiation-Sensitizing Agents/pharmacology , Animals , Azoles/pharmacology , Catalase/pharmacology , Cell Death/drug effects , Cell Death/physiology , Cell Death/radiation effects , Glutathione/deficiency , Glutathione Peroxidase/antagonists & inhibitors , Humans , Isoindoles , Leukemia L1210/drug therapy , Leukemia L1210/metabolism , Leukemia, Experimental/drug therapy , Leukemia, Experimental/metabolism , Mice , Organoselenium Compounds/pharmacology , Phospholipid Hydroperoxide Glutathione Peroxidase , Pyrimidinones/toxicity , Radiation Tolerance/drug effects , Selenium/deficiency
12.
Arch Biochem Biophys ; 288(2): 671-80, 1991 Aug 01.
Article in English | MEDLINE | ID: mdl-1898056

ABSTRACT

The effect of selenium deprivation on the viability of murine L1210 cells exposed to various exogenous lipid hydroperoxides has been investigated. Selenoperoxidase activities of cells grown for longer than 1 week in 1% serum with no added selenium [Se(-) cells] were less than 10% of the activities of selenium-satisfied controls [Se(+) cells] or selenium-repleted counterparts [Se(-/+) cells]. The enzymes measured were classical glutathione peroxidase (GPX) and phospholipid hydroperoxide glutathione peroxidase (PHGPX). Se(-) cells exhibited a compensatory increase in catalase activity. Dye exclusion and clonal survival assays indicated that Se(-) and Se(+) cells were relatively insensitive to photochemically generated phospholipid hydroperoxides in liposomal form. However, both cell types were sensitive to liposomal cholesterol hydroperoxides, e.g., 7-hydroperoxycholesterol (7-OOH), Se(-) being much more so (LD50 approximately 10 microM) than Se(+) (LD50 approximately 75 microM). By contrast, 7-hydroxycholesterol over a comparable concentration range was minimally toxic to Se(-) and Se(+) cells. Cell killing by 7-OOH was inhibited by desferrioxamine and by butylated hydroxytoluene, suggesting that iron-mediated free radical reactions are involved. The involvement of glutathione in cytoprotection was confirmed by showing that Se(+) cells were more sensitive to 7-OOH after treating with buthionine sulfoximine, an inhibitor of GSH synthesis. Cellular detoxification of 7-OOH is provisionally attributed to PHGPX rather than GPX, since 7-OOH and other cholesterol hydroperoxides were found to be good substrates for PHGPX in a cell free system, but were unreactive with GPX.


Subject(s)
Cell Survival/drug effects , Cholesterol/analogs & derivatives , Glutathione Peroxidase/metabolism , Leukemia L1210/pathology , Lipid Peroxides/pharmacology , Selenium/pharmacology , Animals , Butylated Hydroxytoluene/pharmacology , Cell-Free System , Cholesterol/metabolism , Cholesterol/pharmacology , Deferoxamine/pharmacology , Dose-Response Relationship, Drug , Kinetics , Leukemia L1210/enzymology , Liposomes , Mice , Phospholipids/metabolism
13.
Biochim Biophys Acta ; 1045(3): 252-60, 1990 Aug 06.
Article in English | MEDLINE | ID: mdl-2386798

ABSTRACT

Lipid hydroperoxides (LOOHs) in various lipid assemblies are shown to be efficiently reduced and deactivated by phospholipid hydroperoxide glutathione peroxidase (PHGPX), the second selenoperoxidase to be identified and characterized. Coupled spectrophotometric analyses in the presence of NADPH, glutathione (GSH), glutathione reductase and Triton X-100 indicated that photochemically generated LOOHs in small unilamellar liposomes are substrates for PHGPX, but not for the classical glutathione peroxidase (GPX). PHGPX was found to be reactive with cholesterol hydroperoxides as well as phospholipid hydroperoxides. Kinetic iodometric analyses during GSH/PHGPX treatment of photoperoxidized liposomes indicated a rapid decay of total LOOH to a residual level of 35-40%; addition of Triton X-100 allowed the reaction to go to completion. The non-reactive LOOHs in intact liposomes were shown to be inaccessible groups on the inner membrane face. In the presence of iron and ascorbate, photoperoxidized liposomes underwent a burst of thiobarbituric acid-detectable lipid peroxidation which could be inhibited by prior GSH/PHGPX treatment, but not by GSH/GPX treatment. Additional experiments indicated that hydroperoxides of phosphatidylcholine, cholesterol and cholesteryl esters in low-density lipoprotein are also good substrates for PHGPX. An important role of PHGPX in cellular detoxification of a wide variety of LOOHs in membranes and internalized lipoproteins is suggested from these findings.


Subject(s)
Cholesterol/metabolism , Glutathione Peroxidase/metabolism , Lipid Peroxides/metabolism , Phospholipids/metabolism , In Vitro Techniques , Lipid Bilayers , Lipoproteins/metabolism , Lipoproteins, LDL/metabolism , Liposomes , Membrane Proteins/metabolism , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...