Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 375(6586): eabm1670, 2022 03 18.
Article in English | MEDLINE | ID: mdl-35298275

ABSTRACT

Dendritic calcium signaling is central to neural plasticity mechanisms that allow animals to adapt to the environment. Intracellular calcium release (ICR) from the endoplasmic reticulum has long been thought to shape these mechanisms. However, ICR has not been investigated in mammalian neurons in vivo. We combined electroporation of single CA1 pyramidal neurons, simultaneous imaging of dendritic and somatic activity during spatial navigation, optogenetic place field induction, and acute genetic augmentation of ICR cytosolic impact to reveal that ICR supports the establishment of dendritic feature selectivity and shapes integrative properties determining output-level receptive fields. This role for ICR was more prominent in apical than in basal dendrites. Thus, ICR cooperates with circuit-level architecture in vivo to promote the emergence of behaviorally relevant plasticity in a compartment-specific manner.


Subject(s)
CA1 Region, Hippocampal/physiology , Calcium/metabolism , Dendrites/physiology , Endoplasmic Reticulum/metabolism , Neuronal Plasticity , Place Cells/physiology , Action Potentials , Adaptor Proteins, Signal Transducing/genetics , Animals , Calcium Signaling , Cytosol/metabolism , Electroporation , Female , Male , Mice , Optogenetics , Single-Cell Analysis , Spatial Navigation
SELECTION OF CITATIONS
SEARCH DETAIL
...