Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Cell Fact ; 23(1): 112, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622596

ABSTRACT

BACKGROUND: Filamentous fungi have long been recognized for their exceptional enzyme production capabilities. Among these, Trichoderma reesei has emerged as a key producer of various industrially relevant enzymes and is particularly known for the production of cellulases. Despite the availability of advanced gene editing techniques for T. reesei, the cultivation and characterization of resulting strain libraries remain challenging, necessitating well-defined and controlled conditions with higher throughput. Small-scale cultivation devices are popular for screening bacterial strain libraries. However, their current use for filamentous fungi is limited due to their complex morphology. RESULTS: This study addresses this research gap through the development of a batch cultivation protocol using a microbioreactor for cellulase-producing T. reesei strains (wild type, RutC30 and RutC30 TR3158) with offline cellulase activity analysis. Additionally, the feasibility of a microscale fed-batch cultivation workflow is explored, crucial for mimicking industrial cellulase production conditions. A batch cultivation protocol was developed and validated using the BioLector microbioreactor, a Round Well Plate, adapted medium and a shaking frequency of 1000 rpm. A strong correlation between scattered light intensity and cell dry weight underscores the reliability of this method in reflecting fungal biomass formation, even in the context of complex fungal morphology. Building on the batch results, a fed-batch strategy was established for T. reesei RutC30. Starting with a glucose concentration of 2.5 g l - 1 in the batch phase, we introduced a dual-purpose lactose feed to induce cellulase production and prevent carbon catabolite repression. Investigating lactose feeding rates from 0.3 to 0.75 g (l h) - 1 , the lowest rate of 0.3 g (l h) - 1 revealed a threefold increase in cellobiohydrolase and a fivefold increase in ß -glucosidase activity compared to batch processes using the same type and amount of carbon sources. CONCLUSION: We successfully established a robust microbioreactor batch cultivation protocol for T. reesei wild type, RutC30 and RutC30 TR3158, overcoming challenges associated with complex fungal morphologies. The study highlights the effectiveness of microbioreactor workflows in optimizing cellulase production with T. reesei, providing a valuable tool for simultaneous assessment of critical bioprocess parameters and facilitating efficient strain screening. The findings underscore the potential of microscale fed-batch strategies for enhancing enzyme production capabilities, revealing insights for future industrial applications in biotechnology.


Subject(s)
Cellulase , Hypocreales , Trichoderma , Cellulase/metabolism , Lactose/metabolism , Reproducibility of Results , Biotechnology , Trichoderma/metabolism
2.
Microb Cell Fact ; 22(1): 130, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37452397

ABSTRACT

BACKGROUND: Modern genome editing enables rapid construction of genetic variants, which are further developed in Design-Build-Test-Learn cycles. To operate such cycles in high throughput, fully automated screening, including cultivation and analytics, is crucial in the Test phase. Here, we present the required steps to meet these demands, resulting in an automated microbioreactor platform that facilitates autonomous phenotyping from cryo culture to product assay. RESULTS: First, an automated deep freezer was integrated into the robotic platform to provide working cell banks at all times. A mobile cart allows flexible docking of the freezer to multiple platforms. Next, precultures were integrated within the microtiter plate for cultivation, resulting in highly reproducible main cultures as demonstrated for Corynebacterium glutamicum. To avoid manual exchange of microtiter plates after cultivation, two clean-in-place strategies were established and validated, resulting in restored sterile conditions within two hours. Combined with the previous steps, these changes enable a flexible start of experiments and greatly increase the walk-away time. CONCLUSIONS: Overall, this work demonstrates the capability of our microbioreactor platform to perform autonomous, consecutive cultivation and phenotyping experiments. As highlighted in a case study of cutinase-secreting strains of C. glutamicum, the new procedure allows for flexible experimentation without human interaction while maintaining high reproducibility in early-stage screening processes.


Subject(s)
Bioreactors , Corynebacterium glutamicum , Humans , Bioreactors/microbiology , Reproducibility of Results , Biomass , Corynebacterium glutamicum/metabolism
3.
Biotechnol Bioeng ; 117(4): 999-1011, 2020 04.
Article in English | MEDLINE | ID: mdl-31868228

ABSTRACT

Cocultures bear great potential in the conversion of complex substrates and process intensification, as well as, in the formation of unique components only available due to inter-species interactions. Dynamic data of coculture composition is necessary for understanding and optimizing coculture systems. However, most standard online determined parameters measure the sum of all species in the reactor system. The kinetic behavior of the individual species remains unknown. Up to now, different offline methods are available to determine the culture composition, as well as the online measurement of fluorescence of genetically modified organisms. To avoid any genetic modification, a noninvasive online monitoring tool based on the scattered light spectrum was developed for microtiter plate cultivations. To demonstrate the potential, a coculture consisting of the bacterium Lactococcus lactis and the yeast Kluyveromyces marxianus was cultivated. Via partial least squares regression of scattered light spectra, the online determination of the individual biomass concentrations without further sampling and analyses is possible. The results were successfully validated by a Coulter counter-analysis, taking advantage of the different cell sizes of both organisms. The findings prove the applicability of the new method to follow in detail the dynamics of a coculture.


Subject(s)
Biomass , Bioreactors/microbiology , Coculture Techniques/instrumentation , Coculture Techniques/methods , Culture Media/metabolism , Equipment Design , Kinetics , Kluyveromyces/metabolism , Lactococcus lactis/metabolism , Spectrometry, Fluorescence/instrumentation , Spectrometry, Fluorescence/methods
4.
Pharmaceutics ; 11(9)2019 Aug 26.
Article in English | MEDLINE | ID: mdl-31454967

ABSTRACT

Poly(n-butyl cyanoacrylate) microbubbles (PBCA-MB) are extensively employed for functional and molecular ultrasound (US) imaging, as well as for US-mediated drug delivery. To facilitate the use of PBCA-MB as a commercial platform for biomedical applications, it is important to systematically study and improve their stability and shelf-life. In this context, lyophilization (freeze drying) is widely used to increase shelf-life and promote product development. Here, we set out to analyze the stability of standard and rhodamine-B loaded PBCA-MB at three different temperatures (4 °C, 25 °C, and 37 °C), for a period of time of up to 20 weeks. In addition, using sucrose, glucose, polyvinylpyrrolidone (PVP), and polyethylene glycol (PEG) as cryoprotectants, we investigated if PBCA-MB can be lyophilized without affecting their size, concentration, US signal generation properties, and dye retention. Stability assessment showed that PBCA-MB remain largely intact for three and four weeks at 4 °C and 25 °C, respectively, while they disintegrate within one to two weeks at 37 °C, thereby compromising their acoustic properties. Lyophilization analyses demonstrated that PBCA-MB can be efficiently freeze-dried with 5% sucrose and 5% PVP, without changing their size, concentration, and US signal generation properties. Experiments involving rhodamine-B loaded MB indicated that significant dye leakage from the polymeric shell takes place within two to four weeks in case of non-lyophilized PBCA-MB. Lyophilization of rhodamine-loaded PBCA-MB with sucrose and PVP showed that the presence of the dye does not affect the efficiency of freeze-drying, and that the dye is efficiently retained upon MB lyophilization. These findings contribute to the development of PBCA-MB as pharmaceutical products for preclinical and clinical applications.

5.
J Biol Eng ; 11: 1, 2017.
Article in English | MEDLINE | ID: mdl-28074108

ABSTRACT

BACKGROUND: Cellulases are key player in the hydrolyzation of cellulose. Unfortunately, this reaction is slow and a bottleneck in the process chain from biomass to intermediates and biofuels due to low activities of the enzymes. To overcome this draw back, a lot of effort is put into the area of protein engineering, to modify these enzymes by directed evolution or rational design. Huge clone libraries are constructed and have to be screened for improved variants. High-throughput screening is the method of choice to tackle this experimental effort, but up to now only a few process steps are adapted to automated platforms and little attention has been turned to the reproducibility of clone rankings. RESULTS: In this study, an extended robotic platform is presented to conduct automated high-throughput screenings of clone libraries including preculture synchronization and biomass specific induction. Automated upstream, downstream and analytical process steps are described and evaluated using E. coli and K. lactis as model organisms. Conventional protocols for media preparation, cell lysis, Azo-CMC assay and PAHBAH assay are successfully adapted to automatable high-throughput protocols. Finally, a recombinant E. coli celA2 clone library was screened and a reliable clone ranking could be realized. CONCLUSION: The RoboLector device is a suitable platform to perform all process steps of an automated high-throughput clone library screening for improved cellulases. On-line biomass growth measurement controlling liquid handling actions enables fair comparison of clone variants.

SELECTION OF CITATIONS
SEARCH DETAIL
...