Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 21(3)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38834062

ABSTRACT

Objective.In this study, we use electroencephalography (EEG) recordings to determine whether a subject is actively listening to a presented speech stimulus. More precisely, we aim to discriminate between an active listening condition, and a distractor condition where subjects focus on an unrelated distractor task while being exposed to a speech stimulus. We refer to this task as absolute auditory attention decoding.Approach.We re-use an existing EEG dataset where the subjects watch a silent movie as a distractor condition, and introduce a new dataset with two distractor conditions (silently reading a text and performing arithmetic exercises). We focus on two EEG features, namely neural envelope tracking (NET) and spectral entropy (SE). Additionally, we investigate whether the detection of such an active listening condition can be combined with a selective auditory attention decoding (sAAD) task, where the goal is to decide to which of multiple competing speakers the subject is attending. The latter is a key task in so-called neuro-steered hearing devices that aim to suppress unattended audio, while preserving the attended speaker.Main results.Contrary to a previous hypothesis of higher SE being related with actively listening rather than passively listening (without any distractors), we find significantly lower SE in the active listening condition compared to the distractor conditions. Nevertheless, the NET is consistently significantly higher when actively listening. Similarly, we show that the accuracy of a sAAD task improves when evaluating the accuracy only on the highest NET segments. However, the reverse is observed when evaluating the accuracy only on the lowest SE segments.Significance.We conclude that the NET is more reliable for decoding absolute auditory attention as it is consistently higher when actively listening, whereas the relation of the SE between actively and passively listening seems to depend on the nature of the distractor.


Subject(s)
Attention , Electroencephalography , Speech Perception , Humans , Attention/physiology , Electroencephalography/methods , Female , Male , Speech Perception/physiology , Adult , Young Adult , Acoustic Stimulation/methods , Auditory Perception/physiology
2.
J Neural Eng ; 21(1)2024 02 06.
Article in English | MEDLINE | ID: mdl-38266281

ABSTRACT

Objective.Spatial auditory attention decoding (Sp-AAD) refers to the task of identifying the direction of the speaker to which a person is attending in a multi-talker setting, based on the listener's neural recordings, e.g. electroencephalography (EEG). The goal of this study is to thoroughly investigate potential biases when training such Sp-AAD decoders on EEG data, particularly eye-gaze biases and latent trial-dependent confounds, which may result in Sp-AAD models that decode eye-gaze or trial-specific fingerprints rather than spatial auditory attention.Approach.We designed a two-speaker audiovisual Sp-AAD protocol in which the spatial auditory and visual attention were enforced to be either congruent or incongruent, and we recorded EEG data from sixteen participants undergoing several trials recorded at distinct timepoints. We trained a simple linear model for Sp-AAD based on common spatial patterns filters in combination with either linear discriminant analysis (LDA) or k-means clustering, and evaluated them both across- and within-trial.Main results.We found that even a simple linear Sp-AAD model is susceptible to overfitting to confounding signal patterns such as eye-gaze and trial fingerprints (e.g. due to feature shifts across trials), resulting in artificially high decoding accuracies. Furthermore, we found that changes in the EEG signal statistics across trials deteriorate the trial generalization of the classifier, even when the latter is retrained on the test trial with an unsupervised algorithm.Significance.Collectively, our findings confirm that there exist subtle biases and confounds that can strongly interfere with the decoding of spatial auditory attention from EEG. It is expected that more complicated non-linear models based on deep neural networks, which are often used for Sp-AAD, are even more vulnerable to such biases. Future work should perform experiments and model evaluations that avoid and/or control for such biases in Sp-AAD tasks.


Subject(s)
Auditory Perception , Speech Perception , Humans , Acoustic Stimulation/methods , Electroencephalography/methods , Bias
3.
J Neural Eng ; 21(1)2024 02 07.
Article in English | MEDLINE | ID: mdl-38277701

ABSTRACT

Objective.Electroencephalography (EEG) is a widely used technology for recording brain activity in brain-computer interface (BCI) research, where understanding the encoding-decoding relationship between stimuli and neural responses is a fundamental challenge. Recently, there is a growing interest in encoding-decoding natural stimuli in a single-trial setting, as opposed to traditional BCI literature where multi-trial presentations of synthetic stimuli are commonplace. While EEG responses to natural speech have been extensively studied, such stimulus-following EEG responses to natural video footage remain underexplored.Approach.We collect a new EEG dataset with subjects passively viewing a film clip and extract a few video features that have been found to be temporally correlated with EEG signals. However, our analysis reveals that these correlations are mainly driven by shot cuts in the video. To avoid the confounds related to shot cuts, we construct another EEG dataset with natural single-shot videos as stimuli and propose a new set of object-based features.Main results.We demonstrate that previous video features lack robustness in capturing the coupling with EEG signals in the absence of shot cuts, and that the proposed object-based features exhibit significantly higher correlations. Furthermore, we show that the correlations obtained with these proposed features are not dominantly driven by eye movements. Additionally, we quantitatively verify the superiority of the proposed features in a match-mismatch task. Finally, we evaluate to what extent these proposed features explain the variance in coherent stimulus responses across subjects.Significance.This work provides valuable insights into feature design for video-EEG analysis and paves the way for applications such as visual attention decoding.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Humans , Electroencephalography/methods , Eye Movements , Algorithms
4.
IEEE J Biomed Health Inform ; 26(8): 3767-3778, 2022 08.
Article in English | MEDLINE | ID: mdl-35344501

ABSTRACT

The goal of auditory attention decoding (AAD) is to determine to which speaker out of multiple competing speakers a listener is attending based on the brain signals recorded via, e.g., electroencephalography (EEG). AAD algorithms are a fundamental building block of so-called neuro-steered hearing devices that would allow identifying the speaker that should be amplified based on the brain activity. A common approach is to train a subject-specific stimulus decoder that reconstructs the amplitude envelope of the attended speech signal. However, training this decoder requires a dedicated 'ground-truth' EEG recording of the subject under test, during which the attended speaker is known. Furthermore, this decoder remains fixed during operation and can thus not adapt to changing conditions and situations. Therefore, we propose an online time-adaptive unsupervised stimulus reconstruction method that continuously and automatically adapts over time when new EEG and audio data are streaming in. The adaptive decoder does not require ground-truth attention labels obtained from a training session with the end-user and instead can be initialized with a generic subject-independent decoder or even completely random values. We propose two different implementations: a sliding window and recursive implementation, which we extensively validate on three independent datasets based on multiple performance metrics. We show that the proposed time-adaptive unsupervised decoder outperforms a time-invariant supervised decoder, representing an important step toward practically applicable AAD algorithms for neuro-steered hearing devices.


Subject(s)
Auditory Perception , Speech Perception , Algorithms , Attention , Electroencephalography/methods , Humans
5.
IEEE J Biomed Health Inform ; 25(10): 3955-3966, 2021 10.
Article in English | MEDLINE | ID: mdl-33905338

ABSTRACT

When multiple speakers talk simultaneously, a hearing device cannot identify which of these speakers the listener intends to attend to. Auditory attention decoding (AAD) algorithms can provide this information by, for example, reconstructing the attended speech envelope from electroencephalography (EEG) signals. However, these stimulus reconstruction decoders are traditionally trained in a supervised manner, requiring a dedicated training stage during which the attended speaker is known. Pre-trained subject-independent decoders alleviate the need of having such a per-user training stage but perform substantially worse than supervised subject-specific decoders that are tailored to the user. This motivates the development of a new unsupervised self-adapting training/updating procedure for a subject-specific decoder, which iteratively improves itself on unlabeled EEG data using its own predicted labels. This iterative updating procedure enables a self-leveraging effect, of which we provide a mathematical analysis that reveals the underlying mechanics. The proposed unsupervised algorithm, starting from a random decoder, results in a decoder that outperforms a supervised subject-independent decoder. Starting from a subject-independent decoder, the unsupervised algorithm even closely approximates the performance of a supervised subject-specific decoder. The developed unsupervised AAD algorithm thus combines the two advantages of a supervised subject-specific and subject-independent decoder: it approximates the performance of the former while retaining the 'plug-and-play' character of the latter. As the proposed algorithm can be used to automatically adapt to new users, as well as over time when new EEG data is being recorded, it contributes to more practical neuro-steered hearing devices.


Subject(s)
Auditory Perception , Speech Perception , Algorithms , Attention , Electroencephalography
6.
IEEE Trans Biomed Eng ; 68(5): 1557-1568, 2021 05.
Article in English | MEDLINE | ID: mdl-33095706

ABSTRACT

OBJECTIVE: Noise reduction algorithms in current hearing devices lack informationabout the sound source a user attends to when multiple sources are present. To resolve this issue, they can be complemented with auditory attention decoding (AAD) algorithms, which decode the attention using electroencephalography (EEG) sensors. State-of-the-art AAD algorithms employ a stimulus reconstruction approach, in which the envelope of the attended source is reconstructed from the EEG and correlated with the envelopes of the individual sources. This approach, however, performs poorly on short signal segments, whilelonger segments yield impractically long detection delays when the user switches attention. METHODS: We propose decoding the directional focus of attention using filterbank common spatial pattern filters (FB-CSP) as an alternative AAD paradigm, whichdoes not require access to the clean source envelopes. RESULTS: The proposed FB-CSP approach outperforms both the stimulus reconstruction approach on short signal segments, as well as a convolutional neural network approach on the same task. We achieve a high accuracy (80% for [Formula: see text] windows and 70% for quasi-instantaneous decisions), which is sufficient to reach minimal expected switch durations below [Formula: see text]. We also demonstrate that the decoder can adapt to unlabeled data from anunseen subject and works with only a subset of EEG channels located around the ear to emulate a wearable EEG setup. CONCLUSION: The proposed FB-CSP method provides fast and accurate decoding of the directional focus of auditory attention. SIGNIFICANCE: The high accuracy on very short data segments is a major step forward towards practical neuro-steered hearing devices.


Subject(s)
Auditory Perception , Speech Perception , Attention , Electroencephalography , Noise
7.
IEEE Trans Neural Syst Rehabil Eng ; 28(1): 307-317, 2020 01.
Article in English | MEDLINE | ID: mdl-31715568

ABSTRACT

In a multi-speaker scenario, a hearing aid lacks information on which speaker the user intends to attend, and therefore it often mistakenly treats the latter as noise while enhancing an interfering speaker. Recently, it has been shown that it is possible to decode the attended speaker from the brain activity, e.g., recorded by electroencephalography sensors. While numerous of these auditory attention decoding (AAD) algorithms appeared in the literature, their performance is generally evaluated in a non-uniform manner. Furthermore, AAD algorithms typically introduce a trade-off between the AAD accuracy and the time needed to make an AAD decision, which hampers an objective benchmarking as it remains unclear which point in each algorithm's trade-off space is the optimal one in a context of neuro-steered gain control. To this end, we present an interpretable performance metric to evaluate AAD algorithms, based on an adaptive gain control system, steered by AAD decisions. Such a system can be modeled as a Markov chain, from which the minimal expected switch duration (MESD) can be calculated and interpreted as the expected time required to switch the operation of the hearing aid after an attention switch of the user, thereby resolving the trade-off between AAD accuracy and decision time. Furthermore, we show that the MESD calculation provides an automatic and theoretically founded procedure to optimize the number of gain levels and decision time in an AAD-based adaptive gain control system.


Subject(s)
Algorithms , Attention/physiology , Auditory Perception/physiology , Hearing Aids , Benchmarking , Electroencephalography , Healthy Volunteers , Humans , Markov Chains , Prosthesis Design , Speech Perception
SELECTION OF CITATIONS
SEARCH DETAIL
...