Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Publication year range
1.
Elife ; 122023 11 13.
Article in English | MEDLINE | ID: mdl-37955570

ABSTRACT

As the Arctic continues to warm, woody shrubs are expected to expand northward. This process, known as 'shrubification,' has important implications for regional biodiversity, food web structure, and high-latitude temperature amplification. While the future rate of shrubification remains poorly constrained, past records of plant immigration to newly deglaciated landscapes in the Arctic may serve as useful analogs. We provide one new postglacial Holocene sedimentary ancient DNA (sedaDNA) record of vascular plants from Iceland and place a second Iceland postglacial sedaDNA record on an improved geochronology; both show Salicaceae present shortly after deglaciation, whereas Betulaceae first appears more than 1000 y later. We find a similar pattern of delayed Betulaceae colonization in eight previously published postglacial sedaDNA records from across the glaciated circum North Atlantic. In nearly all cases, we find that Salicaceae colonizes earlier than Betulaceae and that Betulaceae colonization is increasingly delayed for locations farther from glacial-age woody plant refugia. These trends in Salicaceae and Betulaceae colonization are consistent with the plant families' environmental tolerances, species diversity, reproductive strategies, seed sizes, and soil preferences. As these reconstructions capture the efficiency of postglacial vascular plant migration during a past period of high-latitude warming, a similarly slow response of some woody shrubs to current warming in glaciated regions, and possibly non-glaciated tundra, may delay Arctic shrubification and future changes in the structure of tundra ecosystems and temperature amplification.


Subject(s)
Betula , Tracheophyta , Ecosystem , Iceland , Betulaceae , Biodiversity , DNA, Ancient
2.
Sci Adv ; 8(20): eabm7625, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35584215

ABSTRACT

Bacterial brGDGT lipids are a prevalent tool in studies of terrestrial paleoclimate. Their distributions correlate empirically with environmental temperature and pH, and their ubiquity in terrestrial, freshwater, and marine environments gives them wide applicability. Whether correlations with temperature and pH emerge due to a physiological response of source organisms and/or a shift in bacterial community composition remains an open question with important implications for proxy development and application. We applied a newly described technique for grouping brGDGTs to a globally compiled dataset (n = 3129) consisting of all modern sample media known to host brGDGTs. We found strong resemblances in the relationships between brGDGT fractional abundances and both temperature and pH across nearly all sample types examined. We also found near-universal connections between the brGDGTs themselves. Given the markedly different bacterial communities expected to inhabit these settings, these widespread relationships may suggest physiological and/or biochemical bases for observed brGDGT distributions.

3.
Biol Lett ; 12(9)2016 09.
Article in English | MEDLINE | ID: mdl-27651529

ABSTRACT

Sea ice has been suggested to be an important factor for dispersal of vascular plants in the Arctic. To assess its role for postglacial colonization in the North Atlantic region, we compiled data on the first Late Glacial to Holocene occurrence of vascular plant species in East Greenland, Iceland, the Faroe Islands and Svalbard. For each record, we reconstructed likely past dispersal events using data on species distributions and genetics. We compared these data to sea-ice reconstructions to evaluate the potential role of sea ice in these past colonization events and finally evaluated these results using a compilation of driftwood records as an independent source of evidence that sea ice can disperse biological material. Our results show that sea ice was, in general, more prevalent along the most likely dispersal routes at times of assumed first colonization than along other possible routes. Also, driftwood is frequently dispersed in regions that have sea ice today. Thus, sea ice may act as an important dispersal agent. Melting sea ice may hamper future dispersal of Arctic plants and thereby cause more genetic differentiation. It may also limit the northwards expansion of competing boreal species, and hence favour the persistence of Arctic species.


Subject(s)
Embryophyta , Ice Cover , Plant Dispersal , Arctic Regions , Climate Change , Islands , Wood
SELECTION OF CITATIONS
SEARCH DETAIL
...