Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(38): 43250-43256, 2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32865960

ABSTRACT

Homogeneous ternary oxides of silicon-, niobium-, and molybdenum-aluminate were deposited by plasma-enhanced ALD using sequential metal precursor pulses prior to the oxidation step, to reduce interfacial defects usually observed in nanolaminate growth. The growth kinetics can be understood in terms of competitive adsorption. Trimethyl aluminum (TMA) is strongly chemisorbed to the growth surface and does not permit coadsorption of any of the other precursors; when we lead with a TMA pulse, the resulting film is always Al2O3. When we lead with the Si or Nb precursors, the growth surface is partially saturated, but open sites are available for TMA coadsorption. The Mo precursor is weakly chemisorbed and is largely displaced by a subsequent TMA dose. As compared to nanolaminate films of the constituent binary oxides, the interface state density is reduced by up to a factor of 5.

2.
Opt Express ; 26(8): 9502-9514, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29715900

ABSTRACT

Suspensions of plasmonic nanoparticles can diffract optical beams due to the combination of thermal lensing and self-phase modulation. Here, we demonstrate extremely efficient optical continuous wave (CW) beam switching across the visible range in optimized suspensions of 5-nm Au and Ag nanoparticles in non-polar solvents, such as hexane and decane. On-axis modulation of greater than 30 dB is achieved at incident beam intensities as low as 100 W/cm2 with response times under 200 µs, at initial solution transparency above 70%. No evidence of laser-induced degradation is observed for the highest intensities used. Numerical modeling of experimental data reveals thermo-optic coefficients of up to -1.3 × 10-3 /K, which, to our knowledge, is the highest observed to date in such nanoparticle suspensions.

3.
Opt Express ; 20(4): 4454-69, 2012 Feb 13.
Article in English | MEDLINE | ID: mdl-22418205

ABSTRACT

Accurate conversion of wideband multi-GHz analog signals into the digital domain has long been a target of analog-to-digital converter (ADC) developers, driven by applications in radar systems, software radio, medical imaging, and communication systems. Aperture jitter has been a major bottleneck on the way towards higher speeds and better accuracy. Photonic ADCs, which perform sampling using ultra-stable optical pulse trains generated by mode-locked lasers, have been investigated for many years as a promising approach to overcome the jitter problem and bring ADC performance to new levels. This work demonstrates that the photonic approach can deliver on its promise by digitizing a 41 GHz signal with 7.0 effective bits using a photonic ADC built from discrete components. This accuracy corresponds to a timing jitter of 15 fs - a 4-5 times improvement over the performance of the best electronic ADCs which exist today. On the way towards an integrated photonic ADC, a silicon photonic chip with core photonic components was fabricated and used to digitize a 10 GHz signal with 3.5 effective bits. In these experiments, two wavelength channels were implemented, providing the overall sampling rate of 2.1 GSa/s. To show that photonic ADCs with larger channel counts are possible, a dual 20-channel silicon filter bank has been demonstrated.

4.
Opt Express ; 16(8): 5218-26, 2008 Apr 14.
Article in English | MEDLINE | ID: mdl-18542624

ABSTRACT

We present a systematic study of Mach-Zehnder silicon optical modulators based on carrier-injection. Detailed comparisons between modeling and measurement results are made with good agreement obtained for both DC and AC characteristics. A figure of merit, static VpiL, as low as 0.24Vmm is achieved. The effect of carrier lifetime variation with doping concentration is explored and found to be important for the modulator characteristics.


Subject(s)
Computer-Aided Design , Models, Theoretical , Optics and Photonics/instrumentation , Silicon/chemistry , Telecommunications/instrumentation , Computer Simulation , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...