Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 378(1880): 20220086, 2023 07 03.
Article in English | MEDLINE | ID: mdl-37183892

ABSTRACT

Skulls of living whales and dolphins (cetaceans) are telescoped-bones of the skull roof are overlapped by expanded facial bones and/or anteriorly extended occipital bones. Evolution of the underlying skull roof (calvarium), which lies between the telescoped regions, is relatively unstudied. We explore the evolution and development of the calvarium of toothed whales (odontocetes) by integrating fetal data with Oligocene odontocete fossils from North America, including eight neonatal and juvenile skulls of Olympicetus†. We identified two potential synapomorphies of crown Cetacea: contact of interparietals with frontals, and a single anterior median interparietal (AMI) element. Within Odontoceti, loss of contact between the parietals diagnoses the clade including Delphinida, Ziphiidae and Platanistidae (=Synrhina). Delphinida is characterized by a greatly enlarged interparietal. New fetal series of delphinoids reveal a consistent developmental pattern with three elements: the AMI and bilateral posterior interparietals (PIs). The PIs most resemble the medial interparietal elements of terrestrial artiodactyls, suggesting that the AMI of cetaceans could be a unique ossification. More broadly, the paucity of conserved anatomical relationships of the interparietals, as well as the fact that the elements often do not coalesce into a single bone, demonstrates that assessing homology of the interparietals across mammals remains challenging. This article is part of the theme issue 'The mammalian skull: development, structure and function'.


Subject(s)
Artiodactyla , Dolphins , Animals , Biological Evolution , Skull , Whales , Mammals , Phylogeny
2.
Syst Biol ; 48(3): 455-90, 1999 Sep.
Article in English | MEDLINE | ID: mdl-12066291

ABSTRACT

Knowledge of the phylogenetic position of the order Cetacea (whales, dolphins, and porpoises) within Mammalia is of central importance to evolutionary biologists studying the transformations of biological form and function that accompanied the shift from fully terrestrial to fully aquatic life in this clade. Phylogenies based on molecular data and those based on morphological data both place cetaceans among ungulates but are incongruent in other respects. Morphologists argue that cetaceans are most closely related to mesonychians, an extinct group of terrestrial ungulates. They have disagreed, however, as to whether Perissodactyla (odd-toed ungulates) or Artiodactyla (even-toed ungulates) is the extant clade most closely related to Cetacea, and have long maintained that each of these orders is monophyletic. The great majority of molecule-based phylogenies show, by contrast, not only that artiodactyls are the closest extant relatives of Cetacea, but also that Artiodactyla is paraphyletic unless cetaceans are nested within it, often as the sister group of hippopotamids. We tested morphological evidence for several hypotheses concerning the sister taxon relationships of Cetacea in a maximum parsimony analysis of 123 morphological characters from 10 extant and 30 extinct taxa. We advocate treating certain multistate characters as ordered because such a procedure incorporates information about hierarchical morphological transformation. In all most-parsimonious trees, whether multistate characters are ordered or unordered, Artiodactyla is the extant sister taxon of Cetacea. With certain multistate characters ordered, the extinct clade Mesonychia (Mesonychidae + Hapalodectidae) is the sister taxon of Cetacea, and Artiodactyla is monophyletic. When all fossils are removed from the analysis, Artiodactyla is paraphyletic with Cetacea nested inside, indicating that inclusion of mesonychians and other extinct stem taxa in a phylogenetic analysis of the ungulate clade is integral to the recovery of artiodactyl monophyly. Phylogenies derived from molecular data alone may risk recovering inconsistent branches because of an inability to sample extinct clades, which by a conservative estimate, amount to 89% of the ingroup. Addition of data from recently described astragali attributed to cetaceans does not overturn artiodactyl monophyly.


Subject(s)
Cetacea/classification , Phylogeny , Animals , Cetacea/genetics
SELECTION OF CITATIONS
SEARCH DETAIL