Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Vet Res ; 17(1): 320, 2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34600548

ABSTRACT

BACKGROUND: Urothelial carcinoma (UC) accounts for > 90% of canine tumors occurring in the urinary bladder. Toceranib phosphate (TOC) is a multi-target receptor tyrosine kinase (RTK) inhibitor that exhibits activity against members of the split kinase family of RTKs. The purpose of this study was to evaluate primary UC tumors and UC cell lines for the expression and activation of VEGFR2, PDGFRα, PDGFRß, and KIT to assess whether dysregulation of these RTKs may contribute to the observed biological activity of TOC. RESULTS: Transcript for VEGFR2, PDGFRα, PDGFRß, and KIT was detected in all UC tissue samples and UC cell lines. The Proteome Profiler™ Human Phospho-RTK Array Kit (R & D Systems) provided a platform to assess phosphorylation of 42 different RTKs in primary UC tumors and UC cell lines. Evidence of PDGFRα and PDGFRß phosphorylation was present in only 11% or 33% of UC tumors, respectively, and 25% of UC cell lines. Treatment of UC cell lines with TOC had no significant impact on cell proliferation, including UC cell lines with evidence of PDGFRß phosphorylation. CONCLUSIONS: Phosphorylation of several key RTKs targeted by TOC is present in a small subset of primary UC tumors and UC cell lines, suggesting that these RTKs do not exist in a state of continuous activation. These data suggest that activation of RTKs targeted by TOC is present in a small subset of UC tumors and UC cell lines and that treatment with TOC at physiologically relevant concentrations has no direct anti-proliferative effect on UC cells.


Subject(s)
Carcinoma, Transitional Cell/veterinary , Indoles/pharmacology , Pyrroles/pharmacology , Receptor Protein-Tyrosine Kinases/metabolism , Urinary Bladder Neoplasms/veterinary , Animals , Carcinoma, Transitional Cell/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Dog Diseases/drug therapy , Dog Diseases/metabolism , Dogs , Female , Male , Receptor Protein-Tyrosine Kinases/genetics , Urinary Bladder Neoplasms/metabolism
2.
Cancer Res ; 81(3): 606-618, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32327406

ABSTRACT

Platelet-derived growth factor receptor-beta (PDGFRß) is a receptor tyrosine kinase found in cells of mesenchymal origin such as fibroblasts and pericytes. Activation of this receptor is dependent on paracrine ligand induction, and its preferred ligand PDGFB is released by neighboring epithelial and endothelial cells. While expression of both PDGFRß and PDGFB has been noted in patient breast tumors for decades, how PDGFB-to-PDGFRß tumor-stroma signaling mediates breast cancer initiation, progression, and metastasis remains unclear. Here we demonstrate this paracrine signaling pathway that mediates both primary tumor growth and metastasis, specifically, metastasis to the brain. Elevated levels of PDGFB accelerated orthotopic tumor growth and intracranial growth of mammary tumor cells, while mesenchymal-specific expression of an activating mutant PDGFRß (PDGFRßD849V) exerted proproliferative signals on adjacent mammary tumor cells. Stromal expression of PDGFRßD849V also promoted brain metastases of mammary tumor cells expressing high PDGFB when injected intravenously. In the brain, expression of PDGFRßD849V was observed within a subset of astrocytes, and aged mice expressing PDGFRßD849V exhibited reactive gliosis. Importantly, the PDGFR-specific inhibitor crenolanib significantly reduced intracranial growth of mammary tumor cells. In a tissue microarray comprised of 363 primary human breast tumors, high PDGFB protein expression was prognostic for brain metastases, but not metastases to other sites. Our results advocate the use of mice expressing PDGFRßD849V in their stromal cells as a preclinical model of breast cancer-associated brain metastases and support continued investigation into the clinical prognostic and therapeutic use of PDGFB-to-PDGFRß signaling in women with breast cancer. SIGNIFICANCE: These studies reveal a previously unknown role for PDGFB-to-PDGFRß paracrine signaling in the promotion of breast cancer brain metastases and support the prognostic and therapeutic clinical utility of this pathway for patients.See related article by Wyss and colleagues, p. 594.


Subject(s)
Breast Neoplasms , MicroRNAs , Animals , Brain/metabolism , Breast Neoplasms/genetics , Endothelial Cells/metabolism , Humans , Mice , Receptor, Platelet-Derived Growth Factor beta
3.
J Vis Exp ; (160)2020 06 07.
Article in English | MEDLINE | ID: mdl-32568247

ABSTRACT

Metastatic spread of cancer is an unfortunate consequence of disease progression, aggressive cancer subtypes, and/or late diagnosis. Brain metastases are particularly devastating, difficult to treat, and confer a poor prognosis. While the precise incidence of brain metastases in the United States remains hard to estimate, it is likely to increase as extracranial therapies continue to become more efficacious in treating cancer. Thus, it is necessary to identify and develop novel therapeutic approaches to treat metastasis at this site. To this end, intracranial injection of cancer cells has become a well-established method in which to model brain metastasis. Previously, the inability to directly measure tumor growth has been a technical hindrance to this model; however, increasing availability and quality of small animal imaging modalities, such as magnetic resonance imaging (MRI), are vastly improving the ability to monitor tumor growth over time and infer changes within the brain during the experimental period. Herein, intracranial injection of murine mammary tumor cells into immunocompetent mice followed by MRI is demonstrated. The presented injection approach utilizes isoflurane anesthesia and a stereotactic setup with a digitally controlled, automated drill and needle injection to enhance precision, and reduce technical error. MRI is measured over time using a 9.4 Tesla instrument in The Ohio State University James Comprehensive Cancer Center Small Animal Imaging Shared Resource. Tumor volume measurements are demonstrated at each time point through use of ImageJ. Overall, this intracranial injection approach allows for precise injection, day-to-day monitoring, and accurate tumor volume measurements, which combined greatly enhance the utility of this model system to test novel hypotheses on the drivers of brain metastases.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/secondary , Injections , Magnetic Resonance Imaging , Anesthesia , Animals , Brain Neoplasms/pathology , Brain Neoplasms/surgery , Breast Neoplasms/pathology , Disease Models, Animal , Disease Progression , Female , Humans , Mice , Stereotaxic Techniques , Tumor Burden
4.
Am J Public Health ; 108(8): 1035-1041, 2018 08.
Article in English | MEDLINE | ID: mdl-29927644

ABSTRACT

OBJECTIVES: To evaluate combined individual- and community-level interventions to reduce underage drinking by American Indian/Alaska Native (AI/AN) youths on rural California Indian reservations. METHODS: Individual-level interventions included brief motivational interviewing and psychoeducation for Tribal youths. Community-level interventions included community mobilization and awareness activities, as well as restricting alcohol sales to minors. To test effects, we compared 7 waves of California Healthy Kids Survey data (2002-2015) for 9th- and 11th-grade AI/AN and non-AI/AN students in intervention area schools with California AI/AN students outside the intervention area (n = 617, n = 33 469, and n = 976, respectively). RESULTS: Pre- to postintervention mean past 30-day drinking frequency declined among current drinkers in the intervention group (8.4-6.3 days) relative to comparison groups. Similarly, heavy episodic drinking frequency among current drinkers declined in the intervention group (7.0-4.8 days) versus the comparison groups. CONCLUSIONS: This study documented significant, sustained past 30-day drinking or heavy episodic drinking frequency reductions among AI/AN 9th- and 11th-grade current drinkers in rural California Indian reservation communities exposed to multilevel interventions. Public Health Implications. Multilevel community-partnered interventions can effectively reduce underage alcohol use in this population.


Subject(s)
Community Health Services/methods , Indians, North American/statistics & numerical data , Underage Drinking/prevention & control , Underage Drinking/statistics & numerical data , Adolescent , California , Female , Humans , Male , Rural Population
5.
Bone Res ; 6: 8, 2018.
Article in English | MEDLINE | ID: mdl-29619268

ABSTRACT

Genome-wide association studies (GWASs) have been instrumental in understanding complex phenotypic traits. However, they have rarely been used to understand lineage-specific pathways and functions that contribute to the trait. In this study, by integrating lineage-specific enhancers from mesenchymal and myeloid compartments with bone mineral density loci, we were able to segregate osteoblast- and osteoclast (OC)-specific functions. Specifically, in OCs, a PU.1-dependent transcription factor (TF) network was revealed. Deletion of PU.1 in OCs in mice resulted in severe osteopetrosis. Functional genomic analysis indicated PU.1 and MITF orchestrated a TF network essential for OC differentiation. Several of these TFs were regulated by cooperative binding of PU.1 with BRD4 to form superenhancers. Further, PU.1 is essential for conformational changes in the superenhancer region of Nfatc1. In summary, our study demonstrates that combining GWASs with genome-wide binding studies and model organisms could decipher lineage-specific pathways contributing to complex disease states.

SELECTION OF CITATIONS
SEARCH DETAIL
...