Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
1.
Sci Total Environ ; 933: 172871, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38697530

ABSTRACT

Fumigants and fungicides are effective at controlling soil-borne pathogens but might also adversely affect soil beneficial microbes, such as soil phosphorus (P) solubilizing microbes, further altering nutrient cycling processes. Therefore, this study investigated the effects of the fumigant chloropicrin (CP) and the fungicide azoxystrobin (AZO) on soil microeukaryotes and P-cycling related soil bacteria through a greenhouse experiment. Soil microeukaryotic communities and bacterial communities containing two phosphomonoesterase encoding genes (phoC and phoD) were analysed using high-throughput sequencing methods. Results showed that, when applied at the field recommended application dosage, the fungicide AZO had no significant influence on the community structure of soil microeukaryotes and phoD-containing bacteria. However, in CP-fumigated soils, the soil microeukaryotic community composition changed from fungi-dominated to protist-dominated. CP fumigation significantly decreased the total phoC/phoD gene copy number but increased the relative abundance of some phoC/phoD-containing bacteria (such as Sinorhizobium and Streptomyces), which are significantly positively correlated to available P compositions in soil. The structural equation model (SEM) confirmed that CP fumigation could affect soil available P content directly by altering phoC-/phoD-containing bacteria, or indirectly by affecting phoC/phoD gene abundance and acid/alkaline phosphatases activity in soil. The inconsistent changes in phoC/phoD-containing bacteria, phoC/phoD gene number, and the phosphomonoesterase activities indicated that enzyme secretion may not be the only way for P solubilizing soil microorganisms to regulate P availability after soil fumigation. The outcome of this study can provide theoretical support for the design of soil beneficial microorganism recovery strategies and the regulation of phosphate fertilizer after soil fumigation.


Subject(s)
Fungicides, Industrial , Hydrocarbons, Chlorinated , Phosphorus , Pyrimidines , Soil Microbiology , Soil , Strobilurins , Phosphorus/analysis , Soil/chemistry , Soil Pollutants , Fumigation , Bacteria , Microbiota/drug effects
2.
Environ Sci Technol ; 58(15): 6744-6752, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38568876

ABSTRACT

During the growing season of 2021, 201 soil samples from conventionally and organically managed fields from 10 European countries and 8 cropping systems were taken, and 192 residues of synthetic pesticides were analyzed. Pesticide residues were found in 97% of the samples, and 88% of the samples contained mixtures of at least 2 substances. A maximum of 21 substances were found in conventionally managed fields, and a maximum of 12 were found in organically managed fields. The number and concentration of pesticide residues varied significantly between conventional and organic fields in 70 and 50% of the case study sites, respectively. Application records were available for a selected number of fields (n = 82), and these records were compared to the detected substances. Residues from 52% of the applied pesticides were detected in the soils. Only 21% of the pesticide residues detected in the soil samples were applied during the 2021 growing season. From the application data, predicted environmental concentrations of residues in soil were calculated and compared to the measured concentrations. These estimates turned out not to be accurate. The results of this study show that most European agricultural soils contain mixtures of pesticide residues and that current calculation methods may not reliably estimate their presence.


Subject(s)
Pesticide Residues , Pesticides , Soil Pollutants , Pesticide Residues/analysis , Pesticide Residues/chemistry , Soil/chemistry , Agriculture , Pesticides/analysis , Europe
3.
Sci Total Environ ; 927: 172175, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38575018

ABSTRACT

The use of plastic mulch films in agriculture leads to the inevitable accumulation of plastic debris in soils. Here, we explored the potential of earthworm gut-inhabiting bacterial strains (Mycobacterium vanbaalenii (MV), Rhodococcus jostii (RJ), Streptomyces fulvissimus (SF), Bacillus simplex (BS), and Sporosarcina globispora (SG) to degrade plastic films (⌀ = 15 mm) made from commonly used polymers: low-density polyethylene film (LDPE-f), polylactic acid (PLA-f), polybutylene adipate terephthalate film (PBAT-f), and a commercial biodegradable mulch film, Bionov-B® (composed of Mater-Bi, a feedstock with PBAT, PLA and other chemical compounds). A 180-day experiment was conducted at room temperature (x̄ =19.4 °C) for different strain-plastic combinations under a low carbon media (0.1× tryptic soy broth). Results showed that the tested strain-plastic combinations did not facilitate the degradation of LDPE-f (treated with RJ and SF), PBAT-f (treated with BS and SG), and Bionov-B (treated with BS, MV, and SG). However, incubating PLA-f with SF triggered a reduction in the molecular weights and an increase in crystallinity. Therefore, we used PLA-f as model plastic to study the influence of temperature ("room temperature" & "30 °C"), carbon source ("carbon-free" & "low carbon supply"), and strain interactions ("single strains" & "strain mixtures") on PLA degradation. SF and SF + RJ treatments significantly fostered PLA degradation under 30 °C in a low-carbon media. PLA-f did not show any degradation in carbon-free media treatments. The competition between different strains in the same system likely hindered the performance of PLA-degrading strains. A positive correlation between the final pH of culture media and PLA-f weight loss was observed, which might reflect the pH-dependent hydrolysis mechanism of PLA. Our results situate SF and its co-culture with RJ strains as possible accelerators of PLA degradation in temperatures below PLA glass transition temperature (Tg). Further studies are needed to test the bioremediation feasibility in soils.


Subject(s)
Biodegradation, Environmental , Oligochaeta , Plastics , Animals , Soil Pollutants/metabolism , Gastrointestinal Microbiome , Bacteria/metabolism , Soil Microbiology , Polyesters
4.
Ecotoxicol Environ Saf ; 277: 116378, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38663191

ABSTRACT

Pesticide residues and microplastics (MPs) in agricultural soils are two major concerns for soil health and food safety. The degradation of chlorpyrifos (CPF), an organophosphorus pesticide, releases phosphates. This process may be affected by the presence of MPs in the soil. The combination of CPF and MPs presence in the soil may thus produce interaction effects that alter the soil phosphorus (P) balance. This study explores the degradation pathways of CPF (6 mg kg-1, 12 mg kg-1 of CPF addition) in soils with different levels of polylactic acid MPs (PLA-MPs) (0.0 %, 0.1 %, 0.5 %, 1.0 % w/w), and analyzes soil P fractions and phosphatase enzyme activities to investigate soil P bioavailability under different treatments. Results show that the degradation of CPF fits to a first-order decay model, with half-lives (DT50) ranging from 11.0 to 14.8 d depending on PLA-MPs treatment. The concentration of its metabolite 3, 5, 6-trichloropyridine 2-phenol (TCP) reached a peak of 0.93-1.67 mg kg-1 within 7-14 days. Similarly, the degradation of CPF led to a significant transient increase in P bioavailability within 3-7 days (p < 0.05), with a peak range of 22.55-26.01 mg kg-1 for Olsen-P content and a peak range of 4.63-6.76 % for the proportions of available P fractions (H2O-P+NaHCO3-P+NaOH-P), before returning to prior levels (Olsen-P: 11.28-19.52 mg kg-1; available soil P fractions: 4.15-5.61 %). CPF degradation (6 mg kg-1) was significantly inhibited in soil with 1.0 % PLA-MPs addition. The effects of MPs and CPF on soil P fractions occur at different time frames, implying that their modes of action and interactions with soil microbes differ.


Subject(s)
Chlorpyrifos , Microplastics , Phosphorus , Soil Pollutants , Soil , Soil Pollutants/analysis , Soil Pollutants/metabolism , Phosphorus/analysis , Soil/chemistry , Biological Availability , Biodegradation, Environmental , Polyesters/chemistry , Polyesters/metabolism , Insecticides/analysis
5.
Water Res ; 254: 121419, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38484551

ABSTRACT

Freshwater ecosystems face a particularly high risk of biodiversity loss compared to marine and terrestrial systems. The use of pesticides in agricultural fields is recognized as a relevant stressor for freshwater environments, exerting a negative impact worldwide on the overall status and health of the freshwater communities. In the present work, part of the Horizon 2020 funded SPRINT project, the occurrence of 193 pesticide residues was investigated in 64 small water bodies of distinct typology (creeks, streams, channels, ditches, rivers, lakes, ponds and reservoirs), located in regions with high agricultural activity in 10 European countries and in Argentina. Mixtures of pesticide residues were detected in all water bodies (20, median; 8-40 min-max). Total pesticide levels found ranged between 6.89 and 5860 ng/L, highlighting herbicides as the dominant type of pesticides. Glyphosate was the compound with the highest median concentration followed by 2,4-D and MCPA, and in a lower degree by dimethomorph, fluopicolide, prothioconazole and metolachlor(-S). Argentina was the site with the highest total pesticide concentration in water bodies followed by The Netherlands, Portugal and France. One or more pesticides exceeded the threshold values established in the European Water Framework Directive for surface water in 9 out of 11 case study sites (CSS), and the total pesticide concentration surpassed the reference value of 500 ng/L in 8 CSS. Although only 5 % (bifenthrin, dieldrin, fipronil sulfone, permethrin, and terbutryn) of the individual pesticides denoted high risk (RQ > 1), the ratios estimated for pesticide mixtures suggested potential environmental risk in the aquatic compartment studied.


Subject(s)
Pesticide Residues , Pesticides , Water Pollutants, Chemical , Water , Ecosystem , Argentina , Water Pollutants, Chemical/analysis , Environmental Monitoring , Pesticides/analysis , Rivers/chemistry
6.
Environ Int ; 184: 108457, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38281448

ABSTRACT

Rural residents are exposed to both particulate and gaseous pesticides in the indoor-outdoor nexus in their daily routine. However, previous personal exposure assessment mostly focuses on single aspects of the exposure, such as indoor or gaseous exposure, leading to severe cognition bias to evaluate the exposure risks. In this study, residential dust and silicone wristbands (including stationary and personal wearing ones) were used to screen pesticides in different phases and unfold the hidden characteristics of personal exposure via indoor-outdoor nexus in intensive agricultural area. Mento-Carlo Simulation was performed to assess the probabilistic exposure risk by transforming adsorbed pesticides from wristbands into air concentration, which explores a new approach to integrate particulate (dust) and gaseous (silicone wristbands) pesticide exposures in indoor and outdoor environment. The results showed that particulate pesticides were more concentrated in indoor, whereas significantly higher concentrations were detected in stationary outdoor wristbands (p < 0.05). Carbendazim and chlorpyrifos were the most frequently detected pesticides in dust and stationary wristbands. Higher pesticide concentration was found in personal wristbands worn by farmers, with the maximum value of 2048 ng g-1 for difenoconazole. Based on the probabilistic risk assessment, around 7.1 % of farmers and 2.6 % of bystanders in local populations were potentially suffering from chronic health issues. One third of pesticide exposures originated mainly from occupational sources while the rest derived from remoting dissipation. Unexpectedly, 43 % of bystanders suffered the same levels of exposure as farmers under the co-existence of occupational and non-occupational exposures. Differed compositions of pesticides were found between environmental samples and personal pesticide exposure patterns, highlighting the need for holistic personal exposure measurements.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Pesticides , Humans , Pesticides/analysis , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Dust/analysis , Gases , Silicones , Environmental Exposure/analysis , Environmental Monitoring/methods
7.
Sci Total Environ ; 912: 169343, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38097076

ABSTRACT

Organochlorine insecticide (OCI) exposures in terrestrial food chains from historical or current applications were studied in a vegetable production area in northwest Bangladesh. A total of 57 subsoil, 57 topsoil, and 57 vegetable samples, as well as 30 cow's milk samples, were collected from 57 farms. Multiple OCI residues were detected using GC-MS/MS with modified QuEChERS in 20 % of subsoils, 21 % of topsoils, 23 % of vegetables, and 7 % of cow's milk samples. Diversified OCI residues were detected in subsoils (17 residues with a concentration of 179.15 ± 148.61 µg kg-1) rather than in topsoils (3 DDT residues with a concentration of 25.76 ± 20.19 µg kg-1). Isomeric ratios indicate intensive historical applications of OCIs. According to Dutch and Chinese standards, the lower concentrations of individual OCI residues in the soil indicate negligible to slight soil pollution, assuming local farmers follow local pesticide use regulations. However, a maximum of 78.24 µg kg-1 ΣAldrines and 35.57 µg kg-1 ΣHCHs were detected (1-4 residues) in 60 % of brinjal, 28 % of cucumber, 29 % of sponge gourd, and 20 % of lady's finger samples, which could be a result of either historical or current OCI applications, or both. A strong positive correlation between aldrines in subsoils and cucurbit vegetables indicates greater bioaccumulation. Cow milk samples contained up to 6.96 µg kg-1 ΣDDTs, which resulted either from rationing contaminated vegetables or grazing on contaminated land. Individual OCI in both vegetables and cow's milk was below the respective maximum residue limits of US and FAO/WHO CODEX and poses little or no risk to human health. However, combined exposure to multiple pesticides could increase human health risks. A cumulative health risk assessment of multiple pesticide residues is suggested to assess the suitability of those soils for cultivation and grazing, as well as the safety of vegetables and cow's milk for human consumption.


Subject(s)
Hydrocarbons, Chlorinated , Insecticides , Pesticide Residues , Pesticides , Animals , Cattle , Female , Humans , Insecticides/analysis , Vegetables , Bangladesh , Food Chain , Tandem Mass Spectrometry , Hydrocarbons, Chlorinated/analysis , Pesticide Residues/analysis , Organic Chemicals , Soil , Food Contamination/analysis
8.
Environ Monit Assess ; 195(12): 1490, 2023 Nov 18.
Article in English | MEDLINE | ID: mdl-37978088

ABSTRACT

The exposure of farmers to pesticides due to inadequate safety measures is a concern in low-income countries in Africa and Asia. However, until now, there have been limited studies on the farmers' risk due to pesticide application to fruit crops. The knowledge of farmers' exposure related to pesticide use and their safety practices was studied among 100 banana farmers in three areas (Padampur, Jagatpur, and Thimura) of Chitwan district, Nepal. More than 75% of the farmers complained about problems related to insects. Most frequently used insecticides in the area were chlorpyrifos and cypermethrin. Ten percent (10%) of the applied pesticides were highly hazardous to humans, according to the World Health Organization hazard category, with skin rash being the most common acute symptom reported by 29% of the farmers. Banned organochlorine and organophosphate insecticides, such as endosulfan and triazophos, respectively, are still being used by farmers in the aforementioned areas. Spearman's correlation analysis revealed the lack of knowledge and safety practices among farmers leading to inadequate awareness related to the negative effects of pesticide use on human health and the environment. Therefore, government extension service can play a crucial role in improving banana farmers' knowledge of the toxic effects of pesticides as well as enforcing the Nepali language in the labeling of pesticide containers and packages.


Subject(s)
Insecticides , Musa , Pesticides , Humans , Farmers , Cross-Sectional Studies , Agriculture , Nepal , Environmental Monitoring
9.
Environ Sci Technol ; 57(48): 20138-20147, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37934470

ABSTRACT

Microplastics (MPs) pollution and dissolved organic matter (DOM) affect soil quality and functions. However, the effect of MPs on DOM and underlying mechanisms have not been clarified, which poses a challenge to maintaining soil health. Under environmentally relevant conditions, we evaluated the major role of polypropylene particles at four micron-level sizes (20, 200, and 500 µm and mixed) in regulating changes in soil DOM content. We found that an increase in soil aeration by medium and high-intensity (>0.5%) MPs may reduce NH4+ leaching by accelerating soil nitrification. However, MPs have a positive effect on soil nutrient retention through the adsorption of PO43- (13.30-34.46%) and NH4+ (9.03-19.65%) and their leached dissolved organic carbon (MP-leached dissolved organic carbon, MP-DOC), thereby maintaining the dynamic balance of soil nutrients. The regulating ion (Ca2+) is also an important competitor in the MP-DOM adsorption system, and changes in its intensity are dynamically involved in the adsorption process. These findings can help predict the response of soil processes, especially nutrient cycling, to persistent anthropogenic stressors, improve risk management policies on MPs, and facilitate the protection of soil health and function, especially in future agricultural contexts.


Subject(s)
Microplastics , Soil , Dissolved Organic Matter , Plastics , Carbon , China
10.
Environ Int ; 181: 108280, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37924602

ABSTRACT

Intensive and widespread use of pesticides raises serious environmental and human health concerns. The presence and levels of 209 pesticide residues (active substances and transformation products) in 625 environmental samples (201 soil, 193 crop, 20 outdoor air, 115 indoor dust, 58 surface water, and 38 sediment samples) have been studied. The samples were collected during the 2021 growing season, across 10 study sites, covering the main European crops, and conventional and organic farming systems. We profiled the pesticide residues found in the different matrices using existing hazard classifications towards non-target organisms and humans. Combining monitoring data and hazard information, we developed an indicator for the prioritization of pesticides, which can support policy decisions and sustainable pesticide use transitions. Eighty-six percent of the samples had at least one residue above the respective limit of detection. One hundred residues were found in soil, 112 in water, 99 in sediments, 78 in crops, 76 in outdoor air, and 197 in indoor dust. The number, levels, and profile of residues varied between farming systems. Our results show that non-approved compounds still represent a significant part of environmental cocktails and should be accounted for in monitoring programs and risk assessments. The hazard profiles analysis confirms the dominance of compounds of low-moderate hazard and underscores the high hazard of some approved compounds and recurring "no data available" situations. Overall, our results support the idea that risk should be assessed in a mixture context, taking environmentally relevant mixtures into consideration. We have uncovered uncertainties and data gaps that should be addressed, as well as the policy implications at the EU approval status level. Our newly introduced indicator can help identify research priority areas, and act as a reference for targeted scenarios set forth in the Farm to Fork pesticide reduction goals.


Subject(s)
Pesticide Residues , Pesticides , Humans , Farmers , Crops, Agricultural , Dust , Soil , Water , Environmental Monitoring
11.
Environ Int ; 182: 108342, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38006771

ABSTRACT

The intensive use of pesticides in the North China Plain (NCP) has resulted in widespread contamination of pesticides in the local atmosphere, posing risks to air quality and human health. However, the occurrence and distribution of atmospheric pesticides in the NCP as well as their risk assessment have not been well investigated. In this study, 300 monthly samples were collected using passive air samplers with polyurethane foam at ten rural sites with different crop systems in Quzhou county, the NCP, from June 2021 to May 2022. The pesticides were quantified using mass-spectrometric techniques. Our results revealed that chlorpyrifos, carbendazim, and atrazine were the most frequently found pesticides in the air samples, with detection frequencies of ≥ 87 % across the samples. The average concentrations of atmospheric pesticides during spring (7.47 pg m-3) and summer (16.05 pg m-3) were significantly higher than those during autumn (2.04 pg m-3) and winter (1.71 pg m-3), attributable to the intensified application of pesticides during the warmer seasons. Additionally, cash crop sites exhibited higher concentrations (10.26 pg m-3) of atmospheric pesticides compared to grain crop (5.59 pg m-3) and greenhouse sites (3.81 pg m-3), primarily due to more frequent pesticides spraying events in cash crop fields. These findings indicate a distinct spatial-temporal distribution pattern of atmospheric pesticides influenced by both seasons and crop systems. Furthermore, the model-based inhalation risk assessment indicates that inhalation exposure to atmospheric pesticides is unlikely to pose a significant public concern.


Subject(s)
Air Pollutants , Air Pollution , Pesticides , Humans , Pesticides/analysis , Air Pollutants/analysis , Environmental Monitoring/methods , Air Pollution/analysis , China , Seasons
12.
Sci Total Environ ; 905: 167797, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37838044

ABSTRACT

Pesticides are widely used as plant protection products (PPPs) in farming systems to preserve crops against pests, weeds, and fungal diseases. Indoor dust can act as a chemical repository revealing occurrence of pesticides in the indoor environment at the time of sampling and the (recent) past. This in turn provides information on the exposure of humans to pesticides in their homes. In the present study, part of the Horizon 2020 funded SPRINT project, the presence of 198 pesticide residues was assessed in 128 indoor dust samples from both conventional and organic farmworker households across Europe, and in Argentina. Mixtures of pesticide residues were found in all dust samples (25-121, min-max; 75, median). Concentrations varied in a wide range (<0.01 ng/g-206 µg/g), with glyphosate and its degradation product AMPA, permethrin, cypermethrin and piperonyl butoxide found in highest levels. Regarding the type of pesticides, insecticides showed significantly higher levels than herbicides and fungicides. Indoor dust samples related to organic farms showed a significantly lower number of residues, total and individual concentrations than those related to conventional farms. Some pesticides found in indoor dust were no longer approved ones (29 %), with acute/chronic hazards to human health (32 %) and with environmental toxicity (21 %).


Subject(s)
Air Pollution, Indoor , Pesticide Residues , Pesticides , Humans , Pesticide Residues/analysis , Environmental Monitoring , Dust/analysis , Farmers , Argentina , Pesticides/analysis , Europe , Air Pollution, Indoor/analysis
13.
J Environ Manage ; 345: 118912, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37678020

ABSTRACT

Seasonal rhythms in biological and ecological dynamics are fundamental in regulating the structuring of microbial communities. Evaluating the seasonal rhythms of microorganisms in response to climate change could provide information on their variability and stability over longer timescales (>20-year). However, information on temporal variability in microorganism responses to medium- and long-term global warming is limited. In this study, we aimed to elucidate the temporal dynamics of microbial communities in response to global warming; to this end, we integrated data on the maintenance of species diversity, community composition, temporal turnover rates (v), and community assembly process in two typical ecosystems (meadows and shrub habitat) on the Qinghai-Tibet Plateau. Our results showed that 21 years of global warming would increase the importance of the deterministic process for microorganisms in both ecosystems across all seasons (R2 of grassland (GL) control: 0.524, R2 of GL warming: 0.467; R2 of shrubland (SL) control: 0.556, R2 of SL warming: 0.543), reducing species diversity and altering community composition. Due to environmental filtration pressure from 21 years of warming, the low turnover rate (v of warming: -3.13/-2.00, v of control: -2.44/-1.48) of soil microorganisms reduces the resistance and resilience of ecological communities, which could lead to higher community similarity and more clustered taxonomic assemblages occurring across years. Changes to temperature might increase selection pressure on specialist taxa, which directly causes dominant species (v of warming: -1.63, v of control: -2.49) primarily comprising these taxa to be more strongly impacted by changing temperature than conditionally (v of warming: -1.47, v of control: -1.75) or always rare taxa (v of warming: -0.57, v of control: -1.33). Evaluation of the seasonal rhythms of microorganisms in response to global warming revealed that the variability and stability of different microbial communities in different habitats had dissimilar biological and ecological performances when challenged with an external disturbance. The balance of competition and cooperation, because of environmental selection, also influenced ecosystem function in complex terrestrial ecosystems. Overall, our study enriches the limited information on the temporal variability in microorganism responses to 21 years of global warming, and provides a scientific basis for evaluating the impact of climate warming on the temporal stability of soil ecosystems.


Subject(s)
Global Warming , Microbiota , Climate Change , Filtration , Soil
14.
Sci Total Environ ; 900: 165179, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37385505

ABSTRACT

Intensive agriculture relies on external inputs to reach high productivity and profitability. Plastic mulch, mainly in the form of Low-Density Polyethylene (LDPE), is widely used in agriculture to decrease evaporation, increase soil temperature and prevent weeds. The incomplete removal of LDPE mulch after use causes plastic contamination in agricultural soils. In conventional agriculture, the use of pesticides also leaves residues accumulating in soils. Thus, the objective of this study was to measure plastic and pesticide residues in agricultural soils and their effects on the soil microbiome. For this, we sampled soil (0-10 cm and 10-30 cm) from 18 parcels from 6 vegetable farms in SE Spain. The farms were under either organic or conventional management, where plastic mulch had been used for >25 years. We measured the macro- and micro-light density plastic debris contents, the pesticide residue levels, and a range of physiochemical properties. We also carried out DNA sequencing on the soil fungal and bacterial communities. Plastic debris (>100 µm) was found in all samples with an average number of 2 × 103 particles kg-1 and area of 60 cm2 kg-1. We found 4-10 different pesticide residues in all conventional soils, for an average of 140 µg kg-1. Overall, pesticide content was ∼100 times lower in organic farms. The soil microbiomes were farm-specific and related to different soil physicochemical parameters and contaminants. Regarding contaminants, bacterial communities responded to the total pesticide residues, the fungicide Azoxystrobin and the insecticide Chlorantraniliprole as well as the plastic area. The fungicide Boscalid was the only contaminant to influence the fungal community. The wide spread of plastic and pesticide residues in agricultural soil and their effects on soil microbial communities may impact crop production and other environmental services. More studies are required to evaluate the total costs of intensive agriculture.


Subject(s)
Fungicides, Industrial , Microbiota , Pesticide Residues , Pesticides , Soil/chemistry , Pesticide Residues/analysis , Vegetables , Polyethylene , Agriculture , Pesticides/analysis
15.
ISME J ; 17(8): 1153-1166, 2023 08.
Article in English | MEDLINE | ID: mdl-37328570

ABSTRACT

The gut microbiota exist within a dynamic ecosystem shaped by various factors that includes exposure to xenobiotics such as pesticides. It is widely regarded that the gut microbiota plays an essential role in maintaining host health, including a major influence on the brain and behaviour. Given the widespread use of pesticides in modern agriculture practices, it is important to assess the long-term collateral effects these xenobiotic exposures have on gut microbiota composition and function. Indeed, exposure studies using animal models have shown that pesticides can induce negative impacts on the host gut microbiota, physiology and health. In tandem, there is a growing body of literature showing that the effects of pesticide exposure can be extended to the manifestation of behavioural impairments in the host. With the increasing appreciation of the microbiota-gut-brain axis, in this review we assess whether pesticide-induced changes in gut microbiota composition profiles and functions could be driving these behavioural alterations. Currently, the diversity of pesticide type, exposure dose and variation in experimental designs hinders direct comparisons of studies presented. Although many insights presented, the mechanistic connection between the gut microbiota and behavioural changes remains insufficiently explored. Future experiments should therefore focus on causal mechanisms to examine the gut microbiota as the mediator of the behavioural impairments observed in the host following pesticide exposure.


Subject(s)
Gastrointestinal Microbiome , Pesticides , Animals , Pesticides/toxicity , Brain-Gut Axis , Ecosystem , Gastrointestinal Microbiome/physiology , Brain
16.
Ecotoxicol Environ Saf ; 262: 115129, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37315365

ABSTRACT

Although biodegradable plastic film is a promising alternative product for reducing polyethylene plastic pollution in agricultural soils, the effects of its residues on plant growth and soil properties remain unclear. In this study, we conducted an experiment to investigate root properties and soil enzyme activities in Poly (butylene adipate-co-terephthalate) microplastics (PBAT-MPs) contaminated soil (0 % (CK), 0.1 %, 0.2 %, 0.5 % and 1 % of dry soil weight) with soybean (Glycine max (Linn.) Merr.) and maize (Zea mays L.). The results show that PBAT-MP accumulation in soil negatively affects root growth, and alter soil enzyme activities, which may then constrain C/N cycling and potential yields. For soybean, the total root length, total root surface area and root biomass decreased by 34 %- 58 %, 34 %- 54 % and 25 %- 40 % at the harvesting stage compared to CK, respectively. The negative effects of PBAT-MPs on maize roots were greater than on soybean roots. The total root length, root surface area and root biomass of maize decreased by 37 %- 71 %, 33 %- 71 % and 24 %- 64 % at the tasseling and harvesting stage, respectively (p < 0.05). Furthermore, a statistical analysis of the data indicates that the inhibition of soybean and maize root growth by PBAT-MP accumulation was mediated by the significantly different impacts of PBAT-MP addition on C-enzyme (ß-xylosidase, cellobiohydrolase, ß-glucosidase) and N-enzyme activities (leucine-aminopeptidase, N-acetyl-ß-glucosaminidase, alanine aminotransferase) in rhizosphere and non-rhizosphere soil, possibly due to interactions with plant-specific root exudates and microbial communities. These findings show the potential risks posed by biodegradable microplastics on the plant-soil system, and suggest that biodegradable plastic film should be applied with caution.

17.
Sci Total Environ ; 892: 164722, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37308011

ABSTRACT

The impact of microbial communities on ecosystem function varies due to the diverse biological attributes and sensitivities exhibited by different taxonomic groups. These groups can be classified as always rare (ART), conditionally rare (CRT), dominant, and total taxa, each affecting ecosystem function in distinct ways. Thus, understanding the functional traits of organisms within these taxa is crucial for comprehending their contributions to overall ecosystem function. In our study, we investigated the influence of climate warming on the biogeochemical cycles of the ecosystem in the Qinghai-Tibet Plateau, utilizing an open top chamber experiment. Simulated warming significantly lowered ecosystem function in the grassland but not in the shrubland. This discrepancy was due to the diverse responses of the various taxa present in each ecosystem to warming conditions and their differing roles in determining and regulating ecosystem function. The microbial maintenance of ecosystem function was primarily reliant on the diversity of bacterial dominant taxa and CRT and was less dependent on ART and fungal taxa. Furthermore, bacterial CRT and dominant taxa of the grassland ecosystem were more sensitive to changing climatic conditions than grassland ART, resulting in a more pronounced negative diversity response. In conclusion, the biological maintenance of ecosystem function during climate warming is dependent on microbiome composition and the functional and response characteristics of the taxa present. Thus, understanding the functional traits and response characteristics of various taxa is crucial for predicting the effects of climate change on ecosystem function and informing ecological reconstruction efforts in alpine regions of the plateau.


Subject(s)
Ecosystem , Grassland , Tibet , Climate Change , Bacteria , Soil/chemistry
18.
J Sci Food Agric ; 103(15): 7393-7402, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37381879

ABSTRACT

BACKGROUND: Soil fumigation can change soil nutrient cycling processes by affecting soil beneficial microorganisms, which is a key issue for soil fertility. However, the effect of combined application of fumigant and fungicide on soil phosphorus (P) availability remains largely unclear. We investigated the effects of the fumigant chloropicrin (CP) and the fungicide azoxystrobin (AZO) on soil phosphatase activity and soil P fractions in ginger production using a 28-week pot experiment with six treatments: control (CK), a single application of AZO (AZO1), double applications of AZO (AZO2), CP-fumigated soil without AZO (CP), CP combined with AZO1 (CP + AZO1) and CP combined with AZO2 (CP + AZO2). RESULTS: AZO application alone significantly increased the soil labile P fractions (Resin-P + NaHCO3 -Pi + NaOH-Pi) at 9 weeks after planting (WAP) but decreased the soil phosphatase activity at 28 WAP. CP fumigation significantly reduced the soil phosphatase activity but increased the proportions of soil labile P fractions (Resin-P + NaHCO3 -Pi + NaHCO3 -Po) to total P (TP) by 9.0-15.5% throughout the experiment. The combined application of CP and AZO had a synergistic effect on soil phosphatase activity and soil P fractions compared with a single application. CONCLUSION: Although AZO application and CP fumigation can increase soil available P in the short term, they might negatively affect soil fertility in the long run by inhibiting soil phosphatase activity. Soil microbial activities, especially microorganisms related to P cycling, may be responsible for the variations in soil P availability, but further research is needed. © 2023 Society of Chemical Industry.


Subject(s)
Fungicides, Industrial , Hydrocarbons, Chlorinated , Pesticides , Zingiber officinale , Soil/chemistry , Phosphorus , Fungicides, Industrial/pharmacology , Phosphoric Monoester Hydrolases
19.
Environ Pollut ; 331(Pt 1): 121910, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37247767

ABSTRACT

Microplastics (MPs) in soil undergo different aging processes such as photoaging, mechanical abrasion and biodegradation, leading to alterations in the surface properties of MPs. In this study, we investigated the adsorption-desorption of chlorpyrifos (CPF) on pristine and UV light-aged low-density polyethylene (LDPE) and biodegradable (Bio) MPs that were derived from plastic mulch films. We also tested the bioconcentration of pristine and aged MPs (LDPE- and Bio-MPs aged under UV light and LDPE-MPs aged in three different soils) associated with CPF by earthworms (Lumbricus terrestris). The results showed that UV-aged MPs showed higher CPF adsorption capacities than pristine MPs, with the adsorption capacities at 184.9 ± 5.3, 200.5 ± 1.8, 193.0 ± 8.7, and 215.9 ± 1.1 µg g-1 for pristine LDPE-, UV-aged LDPE-, pristine Bio- and UV-aged Bio-MPs, respectively. The desorption rate of CPF from UV-aged LDPE-MPs within 48 h was lower than the desorption from pristine ones (28.8 ± 7.7% vs. 40.0 ± 3.9%), while both pristine and UV-aged Bio-MPs showed very low CPF desorption rates. A 4-day Petri dish experiment showed that UV-aged MPs were significantly less concentrated in earthworm casts than pristine counterparts (52% and 36% lower for UV-aged LDPE- and Bio-MPs), while UV-aged MPs with adsorbed CPF were concentrated significantly more than UV-aged MPs without CPF. Interestingly, LDPE-MPs aged in soil with a high carbon, nitrogen, and carbon-to-nitrogen ratio were significantly more concentrated in earthworm casts than pristine LDPE-MPs. In conclusion, UV-aged MPs acted as stronger vectors for CPF than pristine MPs. The bioconcentration of MPs differed significantly due to microplastic aging, as well as the combined effect with CPF. Moreover, LDPE-MPs aged in soil with enriched carbon and nitrogen were significantly concentrated in earthworm casts. Further studies on the environmental behaviours of aged MPs associated with other pollutants in soil, especially soils high in carbon and nitrogen, are needed.


Subject(s)
Chlorpyrifos , Oligochaeta , Animals , Microplastics , Plastics , Polyethylene , Adsorption , Bioaccumulation , Soil
20.
Chemosphere ; 326: 138428, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36958499

ABSTRACT

Pesticide residues in soils can cause negative impacts on soil health as well as soil biota. However, research related to the toxicity and exposure risks of pesticides to soil biota are scarce, especially in the North China Plain (NCP) where pesticides are intensively applied. In this study, the occurrence and distribution of 15 commonly used pesticides in 41 fields in Quzhou county in the NCP were determined during the growing season in 2020. The ecological risks of pesticides to the soil biota, including earthworms, enchytraeids, springtails, mites and nitrogen mineralization microorganisms, were assessed using toxicity exposure ratios (TERs) and risk quotient (RQ) methods. Based on pesticide detection rates and RQs, pesticide hazards were ranked using the Hasse diagram. The results showed that pesticides were concentrated in the 0-2 cm soil depth. Chlorantraniliprole was the most frequently detected pesticide with a detection rate of 37%, while the highest concentration of 1.85 mg kg-1 was found for carbendazim in apple orchards. Chlorpyrifos, carbendazim and imidacloprid posed a chronic exposure risk to E. fetida, F. candida and E. crypticus with the TERs exceeding the trigger value. Pesticide mixtures posed ecological risks to soil biota in 70% of the investigated sites. 47.5% of samples were ranked as high-risk, with the maximum RQ exceeding 490. According to the Hasse diagram, abamectin, tebuconazole, chlorantraniliprole and chlorpyrifos were ranked as the most hazardous pesticides for soil biota in the study region, indicating that alternative methods of pest management need to be considered. Therefore, practical risk mitigation solutions are recommended, in which the use of hazardous pesticides would be replaced with low-risk pesticides with similar functions from the Hasse diagram, or with biopesticides.


Subject(s)
Chlorpyrifos , Pesticide Residues , Pesticides , Pesticides/toxicity , Pesticides/analysis , Soil/chemistry , Chlorpyrifos/analysis , Pesticide Residues/analysis , Biota , Risk Assessment
SELECTION OF CITATIONS
SEARCH DETAIL
...