Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Pharm (Weinheim) ; : e2400384, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39031917

ABSTRACT

In a bioprospection for new antivirals, we tested nonribosomally biosynthesized polypeptide antibiotics in MDCK II cells for their actions on influenza A and B viruses (IAV/IBV). Only tolypin, a mixture of closely related 16-residue peptaibiotics from the fungus Tolypocladium inflatum IE 1897, showed promising activity. It was selected for further investigation and structural characterization by ultrahigh performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HR-MS/MS) and ultrahigh performance liquid chromatography coupled to in-source collision-induced dissociation tandem mass spectrometry (UHPLC-isCID-HR-MS/MS), revealing 12 partially co-eluting individual peptides that were fully sequenced. Since tolypin-related efrapeptins are potent inhibitors of F1/Fo-ATPase, we screened tolypin for its toxicity against MDCK II cells and larvae of the greater wax moth Galleria mellonella. We found that a nontoxic concentration of tolypin (1 µg/mL) reduced the titer of two IBV strains by 4-5 log values, and that of an H3N2 strain by 1-2 log values, but the H1N1pdm strain was not affected. The higher concentrations of tolypin were cytostatic to MDCK II cells, shifted their metabolism from oxidative phosphorylation to glycolysis, and induced paralysis in G. mellonella, supporting the inhibition of F1/Fo-ATPase as the mode of action. Our results lay the foundations for future work to investigate the interplay between viral replication and cellular energy metabolism, as well as the development of drugs that target host factors.

2.
Environ Sci Technol ; 44(23): 8924-9, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21047117

ABSTRACT

Microbial processes can affect the environmental behavior of redox sensitive radionuclides, and understanding these reactions is essential for the safe management of radioactive wastes. Neptunium, an alpha-emitting transuranic element, is of particular importance because of its long half-life, high radiotoxicity, and relatively high solubility as Np(V)O(2)(+) under oxic conditions. Here, we describe experiments to explore the biogeochemistry of Np where Np(V) was added to oxic sediment microcosms with indigenous microorganisms and anaerobically incubated. Enhanced Np removal to sediments occurred during microbially mediated metal reduction, and X-ray absorption spectroscopy showed this was due to reduction to poorly soluble Np(IV) on solids. In subsequent reoxidation experiments, sediment-associated Np(IV) was somewhat resistant to oxidative remobilization. These results demonstrate the influence of microbial processes on Np solubility and highlight the critical importance of radionuclide biogeochemistry in nuclear legacy management.


Subject(s)
Chemical Phenomena , Ecological and Environmental Phenomena , Geologic Sediments/chemistry , Neptunium/metabolism , Radioactive Pollutants/metabolism , Biodegradation, Environmental , Biotransformation , Geologic Sediments/microbiology , Microbiological Phenomena , Neptunium/chemistry , Oxidation-Reduction , Radioactive Pollutants/chemistry , X-Ray Absorption Spectroscopy
3.
Environ Sci Technol ; 44(1): 150-5, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-20039745

ABSTRACT

Here we examine the bioreduction of technetium-99 in sediment microcosm experiments with varying nitrate and carbonate concentrations added to synthetic groundwater to assess the influence of pH and nitrate on bioreduction processes. The systems studied include unamended-, carbonate buffered-, low nitrate-, and high nitrate-groundwaters. During anaerobic incubation, terminal electron accepting processes (TEAPs) in the circumneutral pH, carbonate buffered system progressed to sulfate reduction, and Tc(VII) was removed from solution during Fe(III) reduction. In the high-nitrate system, pH increased during denitrification (pH 5.5 to 7.2), then TEAPs progressed to sulfate reduction. Again, Tc(VII) removal was associated with Fe(III) reduction. In both systems, XAS confirmed reduction to hydrous Tc(IV)O(2) like phases on Tc removal from solution. In the unamended and low-nitrate systems, the pH remained low, Fe(III) reduction was inhibited, and Tc(VII) remained in solution. Thus, nitrate can have complex influences on the development of the metal reducing conditions required for radionuclide treatment. High nitrate concentrations stimulated denitrification and caused pH neutralization facilitating Fe(III) reduction and Tc(VII) removal; acidic, low nitrate systems showed no Fe(III)-reduction. These results have implications for Tc-cycling in contaminated environments where nitrate has been considered undesirable, but where it may enhance Fe(III)-reduction via a novel pH "conditioning" step.


Subject(s)
Geologic Sediments/chemistry , Nitrates/chemistry , Technetium/metabolism , Water Pollutants, Radioactive/metabolism , Oxidation-Reduction , Polymerase Chain Reaction , RNA, Ribosomal, 16S/genetics , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...