Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Arch Microbiol ; 202(7): 1945-1955, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32462213

ABSTRACT

In this study, in situ-expressed metabolic routes of Brochothrix (B.) thermosphacta and Carnobacterium (C.) divergens were evaluated based on a metatranscriptomic dataset from bacteria growing on MAP chicken meat (O2/CO2; N2/CO2). Both species exhibited no (C. divergens) or minor transcription regulation (B. thermosphacta) within their main metabolic routes in response to different atmospheres. Both employ pathways related to glucose and ribose. Gluconeogenesis from lipid-borne glycerol is active in the progressing lack of carbohydrates. Pyruvate fates in both species comprise lactate, ethanol, acetate, CO2, formate, C4-compounds and H2O2 (only B. thermosphacta). Both species express genes for a minimal aerobic respiratory chain, but do not possess the genetic setting for a functional citric acid cycle. While products of carbohydrate and glycerol metabolism display mild to medium sensorial off-characteristics, predicted end products of their amino acid metabolism comprise, e.g., isobutyrate and isovalerate (B. thermosphacta) or cadaverine and tyramine (C. divergens) as potent spoilage compounds.


Subject(s)
Brochothrix/physiology , Carnobacterium/physiology , Food Microbiology/methods , Food Packaging/standards , Meat/microbiology , Transcriptome , Animals , Atmosphere , Colony Count, Microbial , Hydrogen Peroxide/metabolism , Poultry
2.
Microbiol Res ; 222: 52-59, 2019 May.
Article in English | MEDLINE | ID: mdl-30928030

ABSTRACT

Modified atmosphere packaging (MAP) is widely used in food industry to extend the microbiological shelf life of meat. Common CO2-containing gas atmospheres for poultry meat packaging are either nearly O2-free or high O2 MAPs. In this work, we compared spoilage microbiota of skinless chicken breast in CO2/O2 (30/70%) and CO2/N2 (30/70%) MAP, which are culturable with conventional methods and identified isolates by MALDI-TOF MS. These data were compared to metatranscriptome sequencing enabling a culture-independent overview on the composition of microbiota at species level. While typical MAP meat spoilers were confirmed in the transcriptomic approach, we also found high numbers of transcripts mapping to Photobacterium spp. sequences in these samples. As photobacteria were recently shown to occur in different MAP and vacuum packaged meats, we used the respective part of the metatranscriptomic data for prediction of Photobacterium spp. major metabolic routes in situ, upon growth in MAP poultry meat. It is predicted that they employ similar metabolism in both atmospheres: In the lack of carbohydrates upon meat spoilage, the pyruvate pool is filled via glycerol originating from lipolysis and amino acid conversions. From the pyruvate pool, gluconeogenesis is fed enabling cell wall biosynthesis and growth as well as catabolism to lactate and other metabolites, or anaplerosis towards the citric acid cycle. Production is predicted of several biogenic amines including tyramine and cadaverine, enabling generation of proton motive force. Taken together, photobacteria express metabolic pathways upon growth on meat, which should lead to compounds overlapping with those of known potent meat spoilers.


Subject(s)
Atmosphere/chemistry , Food Microbiology , Food Packaging , Meat/microbiology , Microbiota/physiology , Photobacterium/metabolism , Animals , Carbon Dioxide/analysis , Colony Count, Microbial , Food Preservation , Food Storage , Gene Expression Regulation, Bacterial , Metabolic Networks and Pathways , Nitrogen/analysis , Oxygen/analysis , Photobacterium/genetics , Photobacterium/growth & development , Poultry , Sequence Analysis, RNA , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Time Factors , Transcriptome
3.
Microbiol Res ; 221: 1-9, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30825936

ABSTRACT

Strains of Lactobacillus sakei can be isolated from a variety of sources including meat, fermented sausages, sake, sourdough, sauerkraut or kimchi. Selected strains are widely used as starter cultures for sausage fermentation. Recently we have demonstrated that control about the lactic microbiota in fermenting sausages is achieved rather by pairs or strain sets than by single strains. In this work we characterized the pan genome of L. sakei to enable exploitation of the genomic diversity of L. sakei for the establishment of assertive starter strain sets. We have established the full genome sequences of nine L. sakei strains from different sources of isolation and included in the analysis the genome of L. sakei 23K. Comparative genomics revealed an accessory genome comprising about 50% of the pan genome and different lineages of strains with no relation to their source of isolation. Group and strain specific differences could be found, which namely referred to agmatine and citrate metabolism. The presence of genes encoding metabolic pathways for fructose, sucrose and trehalose as well as gluconate in all strains suggests a general adaptation to plant/sugary environments and a life in communities with other genera. Analysis of the plasmidome did not reveal any specific mechanisms of adaptation to a habitat. The predicted differences of metabolic settings enable prediction of partner strains, which can occupy the meat environment to a large extent and establish competitive exclusion of autochthonous microbiota. This may assist the development of a new generation of meat starter cultures containing L. sakei strains.


Subject(s)
Bioreactors/microbiology , Carbohydrate Metabolism/genetics , Fermentation/genetics , Fermented Foods/microbiology , Genome, Bacterial/genetics , Latilactobacillus sakei/genetics , Food Microbiology , Genomics , Latilactobacillus sakei/metabolism , Meat/microbiology , Sequence Analysis, DNA
4.
Int J Food Microbiol ; 294: 18-26, 2019 Apr 02.
Article in English | MEDLINE | ID: mdl-30711889

ABSTRACT

Water kefir is a fermented beverage, which is traditionally prepared from sucrose, kefir grains, dried or fresh fruits, and water. L. hordei and S. cerevisiae are isolated as predominant and stable species of lactic acid bacteria and yeasts, respectively. In this study we demonstrate that label free quantitative proteomics is useful to study microbial interaction along the response of co-cultivated L. hordei TMW 1.1822 in the presence of S. cerevisiae TMW 3.221 as compared with their single cultures in a water kefir model. It is shown and L. hordei responds to S. cerevisiae in many respects revealing a mutualistic relationship. The data suggest that L. hordei responds to the presence of S. cerevisiae with adjustment of intracellular redox reactions controlled of proteins, which are part of Rex regulons and proteins involved in the glycolytic pathway and energy fermentation. An NADH, H+-driven metabolic switch to preferential production of butanediol instead of acetate or lactate, and up-regulation of arginine deiminase, alleviated acid stress and concomitantly protected S. cerevisiae against an acidic environment, which L. hordei generated in single culture. Moreover, the data suggest that the presence of S. cerevisiae in the nitrogen and fatty acids limited environment of the water kefir facilitated and improved the growth of L. hordei by delivering gluconate, fructose, amino acids, fatty acids or substrates for their biosynthesis. Up-regulation of the OppABCDF peptide transport and enzymes involved in amino acid metabolism indicates enhanced peptide uptake, as well as cross-feeding of L. hordei by glutamine, glutamate, histidine, tryptophan, methionine, proline, tryptophan delivered by S. cerevisiae.


Subject(s)
Food Microbiology , Kefir/microbiology , Lactobacillus/metabolism , Microbial Interactions/physiology , Proteomics , Saccharomyces cerevisiae/metabolism , Acetic Acid/metabolism , Amino Acids/metabolism , Fermentation , Lactic Acid/metabolism
5.
Int J Food Microbiol ; 290: 141-149, 2019 Feb 02.
Article in English | MEDLINE | ID: mdl-30340112

ABSTRACT

Water kefir is a traditional fermented beverage made from sucrose, water, kefir granules, dried or fresh fruits. In our water kefir granules, Lactobacillus (L.) hordei is one of the predominant lactic acid bacteria (LAB) species of this presumed symbiotic consortium. It faces abundant sucrose versus limitation of amino- and fatty acids in an acidic environment. Sequencing of the genome of L. hordei TMW 1.1822 revealed one chromosome plus three plasmids. The size of the chromosome was 2.42 Mbp with a GC content of 35% GC and 2461 predicted coding sequences. Furthermore, we identified 1474 proteins upon growth on water kefir medium. Metabolic prediction revealed all enzymes required for the glycolytic Embden-Meyerhof (EMP) and phosphoketolase (PKP) pathways. Genes encoding all enzymes involved in citrate, pyruvate and mannitol metabolism are present. Moreover, it was confirmed that L. hordei is prototrophic for 11 amino acids and auxotrophic for 6 amino acids when combining putative biosynthesis pathways for amino acids with physiological characterization. Still, for glycine, serine and methionine no sure auxotype could be determined. The OppABCDF peptide transport system is complete, and 13 genes encoding peptidases are present. The arginine deiminase system, was predicted to be complete except for carbamate kinase, thus enabling neutralization reactions via ammonium formation but no additional energy generation. Taken together our findings enable prediction of the L. hordei lifestyle in water kefir: Abundant sucrose is consumed directly via parallel EMP and PK pathways and is also extracellularly converted to dextran and fructose by a glucansucrase, leaving fructose as additional carbon source. Essential amino acids (in the form of peptides) and citrate are acquired from fruits. In the lack of FabB unsaturated fatty acids are synthesized by predicted alternative enzymes. Formation of acetoin and diacetyl as well as arginine conversion reactions enable acidification limitation. Other members of the water kefir consortium (yeasts, acetic acid bacteria) likely facilitate or support growth of L. hordei by delivering gluconate, mannitol, amino- and fatty acids and vitamins.


Subject(s)
Genome , Kefir/microbiology , Lactobacillus/physiology , Proteome , Amino Acids/metabolism , Fermentation , Genomics , Glycolysis , Lactobacillus/genetics , Lactobacillus/metabolism , Proteomics
6.
Curr Microbiol ; 76(1): 37-47, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30341451

ABSTRACT

Lactobacillus (L.) brevis represents a versatile, ubiquitistic species of lactic acid bacteria, occurring in various foods, as well as plants and intestinal tracts. The ability to deal with considerably differing environmental conditions in the respective ecological niches implies a genomic adaptation to the particular requirements to use it as a habitat beyond a transient state. Given the isolation source, 24 L. brevis genomes were analyzed via comparative genomics to get a broad view of the genomic complexity and ecological versatility of this species. This analysis showed L. brevis being a genetically diverse species possessing a remarkably large pan genome. As anticipated, it proved difficult to draw a correlation between chromosomal settings and isolation source. However, on plasmidome level, brewery- and insect-derived strains grouped into distinct clusters, referable to a noteworthy gene sharing between both groups. The brewery-specific plasmidome is characterized by several genes, which support a life in the harsh environment beer, but 40% of the brewery plasmidome were found in insect-derived strains as well. This suggests a close interaction between these habitats. Further analysis revealed the presence of a truncated horC cluster version in brewery- and insect-associated strains. This disproves horC, the major contributor to survival in beer, as brewery isolate specific. We conclude that L. brevis does not perform rigorous chromosomal changes to live in different habitats. Rather it appears that the species retains a certain genetic diversity in the plasmidome and meets the requirements of a particular ecological niche with the acquisition of appropriate plasmids.


Subject(s)
Beer/microbiology , Genome, Bacterial/genetics , Insecta/microbiology , Levilactobacillus brevis/genetics , Plasmids/genetics , Adaptation, Physiological , Animals , Food Microbiology , Genetic Variation/genetics , Genomics , Levilactobacillus brevis/classification , Levilactobacillus brevis/isolation & purification
7.
Int J Biol Macromol ; 107(Pt A): 874-881, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28939514

ABSTRACT

Despite several hurdles, which hinder bacterial growth in beer, certain bacteria are still able to spoil beer. One type of spoilage is characterized by an increased viscosity and slimy texture caused by exopolysaccharide (EPS) formation of lactic acid bacteria (LAB). In this study, we characterize for the first time EPS production in a beer-spoiling strain (TMW 1.2112) of Lactobacillus brevis, a species commonly involved in beer spoilage. The strain's growth dynamics were assessed and we found an increased viscosity or ropiness in liquid or on solid media, respectively. Capsular polysaccharides (CPS) and released EPS from the cells or supernatant, respectively, were analyzed via NMR spectroscopy and methylation analysis. Both are identical ß-(1→3)-glucans, which are ramified with ß-glucose residues at position O2. Therefore, we assume that this EPS is mainly produced as CPS and partially released into the surrounding medium, causing viscosity of e.g. beer. CPS formation was confirmed via an agglutination test. A plasmid-located glycosyltransferase-2 was found as responsible for excess ß-glucan formation, chromosomal glucanases were proposed for its degradation. The glycosyltransferase-2 gene could also be specifically identified in beer-spoiling, slime-producing Lactobacillus rossiae and Lactobacillus parabuchneri strains, suggesting it as promising marker gene for the early detection of ß-glucan-producing Lactobacilli in breweries.


Subject(s)
Beer/microbiology , Levilactobacillus brevis/chemistry , Polysaccharides/biosynthesis , beta-Glucans/chemistry , Food Microbiology , Glucose/chemistry , Glycosyltransferases/chemistry , Glycosyltransferases/genetics , Levilactobacillus brevis/genetics , Levilactobacillus brevis/growth & development , Magnetic Resonance Spectroscopy , Polysaccharides/chemistry , Polysaccharides/genetics , Viscosity , beta-Glucans/isolation & purification
8.
J Proteome Res ; 16(10): 3816-3829, 2017 10 06.
Article in English | MEDLINE | ID: mdl-28862000

ABSTRACT

Lactic acid bacteria are broadly employed as starter cultures in the manufacture of foods. Upon technological preparation, they are confronted with drying stress that amalgamates numerous stress conditions resulting in losses of fitness and survival. To better understand and differentiate physiological stress responses, discover general and specific markers for the investigated stress conditions, and predict optimal preconditioning for starter cultures, we performed a comprehensive genomic and quantitative proteomic analysis of a commonly used model system, Lactobacillus paracasei subsp. paracasei TMW 1.1434 (isogenic with F19) under 11 typical stress conditions, including among others oxidative, osmotic, pH, and pressure stress. We identified and quantified >1900 proteins in triplicate analyses, representing 65% of all genes encoded in the genome. The identified genes were thoroughly annotated in terms of subcellular localization prediction and biological functions, suggesting unbiased and comprehensive proteome coverage. In total, 427 proteins were significantly differentially expressed in at least one condition. Most notably, our analysis suggests that optimal preconditioning toward drying was predicted to be alkaline and high-pressure stress preconditioning. Taken together, we believe the presented strategy may serve as a prototypic example for the analysis and utility of employing quantitative-mass-spectrometry-based proteomics to study bacterial physiology.


Subject(s)
Bacterial Proteins/genetics , Lacticaseibacillus paracasei/genetics , Proteomics , Stress, Physiological/genetics , Food Analysis , Gene Expression Regulation, Bacterial/genetics , Genome, Bacterial/genetics , Lacticaseibacillus paracasei/physiology , Proteome/genetics
9.
Genome Announc ; 5(26)2017 Jun 29.
Article in English | MEDLINE | ID: mdl-28663299

ABSTRACT

Lactobacillus brevis represents one of the most relevant beer-spoiling bacteria. Besides strains causing turbidity and off flavors upon growth and metabolite formation, this species also comprises strains that produce exopolysaccharides (EPSs), which increase the viscosity of beer. Here, we report the complete genome sequences of three EPS-producing, brewery-associated L. brevis strains.

10.
Genome Announc ; 5(29)2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28729269

ABSTRACT

We report here the genome sequences of four Lactobacillus plantarum strains which vary in surface hydrophobicity. Bioinformatic analysis, using additional genomes of Lactobacillus plantarum strains, revealed a possible correlation between the cell wall teichoic acid-type and cell surface hydrophobicity and provide the basis for consecutive analyses.

11.
Genome Announc ; 5(16)2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28428295

ABSTRACT

We report here the complete genome sequences of the acetic acid bacteria (AAB) Acetobacter aceti TMW 2.1153, A. persici TMW 2.1084, and Neoasaia chiangmaiensis NBRC 101099, which secrete biotechnologically relevant heteropolysaccharides (HePSs) into their environments. Upon genome sequencing of these AAB strains, the corresponding HePS biosynthesis pathways were identified.

12.
Genome Announc ; 4(5)2016 Oct 06.
Article in English | MEDLINE | ID: mdl-27795248

ABSTRACT

Seven strains of important beer-spoiling lactic acid bacteria were sequenced using single-molecule real-time sequencing. Complete genomes were obtained for strains of Lactobacillus paracollinoides, Lactobacillus lindneri, and Pediococcus claussenii The analysis of these genomes emphasizes the role of plasmids as the genomic foundation of beer-spoiling ability.

13.
Microb Cell Fact ; 15(1): 170, 2016 Oct 04.
Article in English | MEDLINE | ID: mdl-27716345

ABSTRACT

BACKGROUND: Acetic acid bacteria (AAB) are well known producers of commercially used exopolysaccharides, such as cellulose and levan. Kozakia (K.) baliensis is a relatively new member of AAB, which produces ultra-high molecular weight levan from sucrose. Throughout cultivation of two K. baliensis strains (DSM 14400, NBRC 16680) on sucrose-deficient media, we found that both strains still produce high amounts of mucous, water-soluble substances from mannitol and glycerol as (main) carbon sources. This indicated that both Kozakia strains additionally produce new classes of so far not characterized EPS. RESULTS: By whole genome sequencing of both strains, circularized genomes could be established and typical EPS forming clusters were identified. As expected, complete ORFs coding for levansucrases could be detected in both Kozakia strains. In K. baliensis DSM 14400 plasmid encoded cellulose synthase genes and fragments of truncated levansucrase operons could be assigned in contrast to K. baliensis NBRC 16680. Additionally, both K. baliensis strains harbor identical gum-like clusters, which are related to the well characterized gum cluster coding for xanthan synthesis in Xanthomanas campestris and show highest similarity with gum-like heteropolysaccharide (HePS) clusters from other acetic acid bacteria such as Gluconacetobacter diazotrophicus and Komagataeibacter xylinus. A mutant strain of K. baliensis NBRC 16680 lacking EPS production on sucrose-deficient media exhibited a transposon insertion in front of the gumD gene of its gum-like cluster in contrast to the wildtype strain, which indicated the essential role of gumD and of the associated gum genes for production of these new EPS. The EPS secreted by K. baliensis are composed of glucose, galactose and mannose, respectively, which is in agreement with the predicted sugar monomer composition derived from in silico genome analysis of the respective gum-like clusters. CONCLUSIONS: By comparative sugar monomer and genome analysis, the polymeric substances secreted by K. baliensis can be considered as unique HePS. Via genome sequencing of K. baliensis DSM 14400 + NBRC 16680 we got first insights into the biosynthesis of these novel HePS, which is related to xanthan and acetan biosynthesis. Consequently, the present study provides the basis for establishment of K. baliensis strains as novel microbial cell factories for biotechnologically relevant, unique polysaccharides.


Subject(s)
Acetic Acid/metabolism , Acetobacteraceae/genetics , Acetobacteraceae/metabolism , Genome, Bacterial , Polysaccharides, Bacterial/biosynthesis , Acetobacteraceae/growth & development , Bacterial Proteins/genetics , Base Sequence , Cellulose/biosynthesis , Cellulose/genetics , Computer Simulation , DNA Transposable Elements , Fructans/biosynthesis , Gluconacetobacter xylinus/genetics , Glycerol/metabolism , Mannitol/metabolism , Operon , Polysaccharides, Bacterial/chemistry , Polysaccharides, Bacterial/genetics , Sequence Analysis, DNA , Sucrose/metabolism
14.
Genome Announc ; 4(4)2016 Aug 25.
Article in English | MEDLINE | ID: mdl-27563041

ABSTRACT

Lactobacillus backii is an important beer-spoiling species. Five strains isolated from four different breweries were sequenced using single-molecule real-time sequencing. Five complete genomes were generated, which will help to understand niche adaptation to beer and provide the basis for consecutive analyses.

15.
PLoS One ; 11(3): e0152747, 2016.
Article in English | MEDLINE | ID: mdl-27028007

ABSTRACT

As the number of bacterial genomes increases dramatically, the demand for easy to use tools with transparent functionality and comprehensible output for applied comparative genomics grows as well. We present BlAst Diagnostic Gene findEr (BADGE), a tool for the rapid prediction of diagnostic marker genes (DMGs) for the differentiation of bacterial groups (e.g. pathogenic / nonpathogenic). DMG identification settings can be modified easily and installing and running BADGE does not require specific bioinformatics skills. During the BADGE run the user is informed step by step about the DMG finding process, thus making it easy to evaluate the impact of chosen settings and options. On the basis of an example with relevance for beer brewing, being one of the oldest biotechnological processes known, we show a straightforward procedure, from phenotyping, genome sequencing, assembly and annotation, up to a discriminant marker gene PCR assay, making comparative genomics a means to an end. The value and the functionality of BADGE were thoroughly examined, resulting in the successful identification and validation of an outstanding novel DMG (fabZ) for the discrimination of harmless and harmful contaminations of Pediococcus damnosus, which can be applied for spoilage risk determination in breweries. Concomitantly, we present and compare five complete P. damnosus genomes sequenced in this study, finding that the ability to produce the unwanted, spoilage associated off-flavor diacetyl is a plasmid encoded trait in this important beer spoiling species.


Subject(s)
Genes, Bacterial , Pediococcus/genetics , Genetic Markers
16.
Int J Food Microbiol ; 216: 60-8, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26398285

ABSTRACT

Beer contains only limited amounts of readily fermentable carbohydrates and amino acids. Beer spoilage lactic acid bacteria (LAB) have to come up with metabolic strategies in order to deal with selective nutrient content, high energy demand of hop tolerance mechanisms and a low pH. The metabolism of 26 LAB strains of 6 species and varying spoilage potentialwas investigated in order to define and compare their metabolic capabilities using multivariate statistics and outline possible metabolic strategies. Metabolic capabilities of beer spoilage LAB regarding carbohydrate and amino acids did not correlate with spoilage potential, but with fermentation type (heterofermentative/homofermentative) and species. A shift to mixed acid fermentation by homofermentative (hof) Pediococcus claussenii and Lactobacillus backii was observed as a specific feature of their growth in beer. For heterofermentative (hef) LAB a mostly versatile carbohydrate metabolism could be demonstrated, supplementing the known relevance of organic acids for their growth in beer. For hef LAB a distinct amino acid metabolism, resulting in biogenic amine production, was observed, presumably contributing to energy supply and pH homeostasis.


Subject(s)
Beer/microbiology , Carbohydrate Metabolism/physiology , Fermentation/physiology , Lactobacillus/metabolism , Pediococcus/metabolism , Amino Acids/metabolism , Food Microbiology , Lactic Acid/metabolism , Lactobacillus/growth & development , Pediococcus/growth & development
17.
Food Microbiol ; 51: 130-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26187837

ABSTRACT

The tolerance to hop compounds, which is mainly associated with inhibition of bacterial growth in beer, is a multi-factorial trait. Any approaches to predict the physiological differences between beer-spoiling and non-spoiling strains on the basis of a single marker gene are limited. We identified ecotype-specific genes related to the ability to grow in Pilsner beer via comparative genome sequencing. The genome sequences of four different strains of Lactobacillus brevis were compared, including newly established genomes of two highly hop tolerant beer isolates, one strain isolated from faeces and one published genome of a silage isolate. Gene fragments exclusively occurring in beer-spoiling strains as well as sequences only occurring in non-spoiling strains were identified. Comparative genomic arrays were established and hybridized with a set of L. brevis strains, which are characterized by their ability to spoil beer. As result, a set of 33 and 4 oligonucleotide probes could be established specifically detecting beer-spoilers and non-spoilers, respectively. The detection of more than one of these marker sequences according to a genetic barcode enables scoring of L. brevis for their beer-spoiling potential and can thus assist in risk evaluation in brewing industry.


Subject(s)
Beer/microbiology , Genome, Bacterial , Levilactobacillus brevis/genetics , Bacterial Proteins/genetics , Base Sequence , Computational Biology , Computer Simulation , Ecotype , Food Microbiology , Genetic Markers , Levilactobacillus brevis/metabolism , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...