Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
3.
Clin Sci (Lond) ; 134(19): 2623-2643, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33063822

ABSTRACT

Neuregulins (NRGs) are protein ligands that act through ErbB receptor tyrosine kinases to regulate tissue morphogenesis, plasticity, and adaptive responses to physiologic needs in multiple tissues, including the heart and circulatory system. The role of NRG/ErbB signaling in cardiovascular biology, and how it responds to physiologic and pathologic stresses is a rapidly evolving field. While initial concepts focused on the role that NRG may play in regulating cardiac myocyte responses, including cell survival, growth, adaptation to stress, and proliferation, emerging data support a broader role for NRGs in the regulation of metabolism, inflammation, and fibrosis in response to injury. The constellation of effects modulated by NRGs may account for the findings that two distinct forms of recombinant NRG-1 have beneficial effects on cardiac function in humans with systolic heart failure. NRG-4 has recently emerged as an adipokine with similar potential to regulate cardiovascular responses to inflammation and injury. Beyond systolic heart failure, NRGs appear to have beneficial effects in diastolic heart failure, prevention of atherosclerosis, preventing adverse effects on diabetes on the heart and vasculature, including atherosclerosis, as well as the cardiac dysfunction associated with sepsis. Collectively, this literature supports the further examination of how this developmentally critical signaling system functions and how it might be leveraged to treat cardiovascular disease.


Subject(s)
Cardiotonic Agents/metabolism , Cardiovascular Diseases/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Neuregulins/metabolism , Animals , Cardiovascular Diseases/blood , Clinical Trials as Topic , Humans , Neovascularization, Physiologic , Neuregulins/blood
4.
Free Radic Biol Med ; 104: 249-261, 2017 03.
Article in English | MEDLINE | ID: mdl-28108278

ABSTRACT

Selenium is present in proteins in the form of selenocysteine, where this amino acid serves catalytic oxidoreductase functions. The use of selenocysteine in nature is strongly associated with redox catalysis. However, selenium is also found in a 2-selenouridine moiety at the wobble position of tRNAGlu, tRNAGln and tRNALys. It is thought that the modifications of the wobble position of the tRNA improves the selectivity of the codon-anticodon pair as a result of the physico-chemical changes that result from substitution of sulfur and selenium for oxygen. Both selenocysteine and 2-selenouridine have widespread analogs, cysteine and thiouridine, where sulfur is used instead. To examine the role of selenium in 2-selenouridine, we comparatively analyzed the oxidation reactions of sulfur-containing 2-thiouracil-5-carboxylic acid (s2c5Ura) and its selenium analog 2-selenouracil-5-carboxylic acid (se2c5Ura) using 1H-NMR spectroscopy, 77Se-NMR spectroscopy, and liquid chromatography-mass spectrometry. Treatment of s2c5Ura with hydrogen peroxide led to oxidized intermediates, followed by irreversible desulfurization to form uracil-5-carboxylic acid (c5Ura). In contrast, se2c5Ura oxidation resulted in a diselenide intermediate, followed by conversion to the seleninic acid, both of which could be readily reduced by ascorbate and glutathione. Glutathione and ascorbate only minimally prevented desulfurization of s2c5Ura, whereas very little deselenization of se2c5Ura occurred in the presence of the same antioxidants. In addition, se2c5Ura but not s2c5Ura showed glutathione peroxidase activity, further suggesting that oxidation of se2c5Ura is readily reversible, while oxidation of s2c5Ura is not. The results of the study of these model nucleobases suggest that the use of 2-selenouridine is related to resistance to oxidative inactivation that otherwise characterizes 2-thiouridine. As the use of selenocysteine in proteins also confers resistance to oxidation, our findings suggest a common mechanism for the use of selenium in biology.


Subject(s)
Selenium/metabolism , Selenocysteine/metabolism , Sulfur/metabolism , Uracil/metabolism , Glutathione/metabolism , Hydrogen Peroxide/pharmacology , Magnetic Resonance Spectroscopy , Organoselenium Compounds/chemistry , Organoselenium Compounds/metabolism , Oxidation-Reduction , Oxidative Stress , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Selenium/chemistry , Selenocysteine/chemistry , Sulfur/chemistry , Uracil/analogs & derivatives , Uracil/chemistry , Uridine/analogs & derivatives , Uridine/chemistry , Uridine/metabolism
5.
Cancer Metab ; 4: 14, 2016.
Article in English | MEDLINE | ID: mdl-27418963

ABSTRACT

Molecular profiling studies of tumor tissue from patients with clear cell renal cell cancer (ccRCC) have revealed extensive metabolic reprogramming in this disease. Associations were found between metabolic reprogramming, histopathologic Fuhrman grade, and overall survival of patients. Large-scale genomics, proteomics, and metabolomic analyses have been performed to identify the molecular players in this process. Genes involved in glycolysis, the pentose phosphate pathway, glutamine metabolism, and lipogenesis were found to be upregulated in renal cell cancer (RCC) specimens as compared to normal tissue. Preclinical research indicates that mutations in VHL, FBP1, and the PI3K-AKT-mTOR pathway drives aerobic glycolysis through transcriptional activation of the hypoxia-inducible factors (HIF). Mechanistic studies revealed glutamine as an important source for de novo fatty acid synthesis through reductive carboxylation. Amplification of MYC drives reductive carboxylation. In this review, we present a detailed overview of the metabolic changes in RCC in conjunction with potential novel therapeutics. We discuss preclinical studies that have investigated targeted agents that interfere with various aspects of tumor cell metabolism and emphasize their impact specifically on glycolysis, lipogenesis, and tumor growth. Furthermore, we describe a number of phase 1 and 2 clinical trials that have been conducted with these agents.

6.
Mol Cancer ; 12: 17, 2013 Mar 05.
Article in English | MEDLINE | ID: mdl-23497256

ABSTRACT

BACKGROUND: The studies reported herein were undertaken to determine if the angiostatic function of p53 could be exploited as an adjunct to VEGF-targeted therapy in the treatment of renal cell carcinoma (RCC). METHODS: Nude/beige mice bearing human RCC xenografts were treated with various combinations of sunitinib and the HDM2 antagonist MI-319. Tumors were excised at various time points before and during treatment and analyzed by western blot and IHC for evidence of p53 activation and function. RESULTS: Sunitinib treatment increased p53 levels in RCC xenografts and transiently induced the expression of p21(waf1), Noxa, and HDM2, the levels of which subsequently declined to baseline (or undetectable) with the emergence of sunitinib resistance. The development of resistance and the suppression of p53-dependent gene expression temporally correlated with the induction of the p53 antagonist HDMX. The concurrent administration of MI-319 markedly increased the antitumor and anti-angiogenic activities of sunitinib and led to sustained p53-dependent gene expression. It also suppressed the expression of the chemokine SDF-1 (CXCL12) and the influx of CD11b+/Gr-1+ myeloid-derived suppressor cells (MDSC) otherwise induced by sunitinib. Although p53 knockdown markedly reduced the production of the angiostatic peptide endostatin, the production of endostatin was not augmented by MI-319 treatment. CONCLUSIONS: The evasion of p53 function (possibly through the expression of HDMX) is an essential element in the development of resistance to VEGF-targeted therapy in RCC. The maintenance of p53 function through the concurrent administration of an HDM2 antagonist is an effective means of delaying or preventing the development of resistance.


Subject(s)
Chemokine CXCL12/metabolism , Drug Resistance, Neoplasm , Indoles/pharmacology , Myeloid Cells/pathology , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Pyrroles/pharmacology , Tumor Suppressor Protein p53/metabolism , Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/pharmacology , Animals , Apoptosis/drug effects , Apoptosis/genetics , CD11b Antigen/metabolism , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/pathology , Cell Line , Cell Proliferation/drug effects , Chemokine CXCL12/genetics , Endostatins/genetics , Endostatins/metabolism , Female , Gene Knockdown Techniques , Humans , Indoles/administration & dosage , Mice , Myeloid Cells/metabolism , Procollagen-Proline Dioxygenase/metabolism , Pyrroles/administration & dosage , Spiro Compounds/administration & dosage , Spiro Compounds/pharmacology , Sunitinib , Transplantation, Heterologous , Tumor Burden/drug effects , Tumor Burden/genetics , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...