Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Sports Sci ; 41(9): 912-924, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37585706

ABSTRACT

This study investigated the relationships between maximal club head speed (CHS) and physiological and anthropometric parameters in 21 national-level male golfers (age: 21.9 ± 3.9 years; handicap: +1.1 ± 1.7). Maximal isometric strength (MVC) was measured during isometric mid-thigh pull and bench press, while MVC and rate of force development (RFD) were measured during isometric leg press. Power, lower limb stiffness, positive impulse, jump height and RFDdyn were measured during countermovement jump (CMJ). Moreover, rotational trunk power, active range of motion (AROM) and anthropometrics were determined. Comparisons were made between participants with high (FTG) and low (STG) CHS, respectively. FTG demonstrated greater isometric mid-thigh pull and isometric bench press MVC, leg press RFD, rotational trunk power, and CMJ parameters (except RFDdyn) as well as reduced hip AROM compared to STG (P < 0.01). CHS was positively correlated to isometric mid-thigh pull and isometric bench press MVC, leg press RFD, rotational trunk power and CMJ parameters (P < 0.01). In conclusion, strong positive correlations were observed between maximal CHS and maximal strength and power parameters. Consequently, improving maximal neuromuscular strength and power may be considered of importance for golfers, as greater CHS and accompanying driving distance may lead to competitive advantages.

2.
Andrology ; 6(4): 547-555, 2018 07.
Article in English | MEDLINE | ID: mdl-29656500

ABSTRACT

Low testosterone levels in aging men are associated with insulin resistance. Mitochondrial dysfunction, changes in glycogen metabolism, and lipid accumulation are linked to insulin resistance in skeletal muscle. In this randomized, double-blinded, placebo-controlled study, we investigated the effects of six-month testosterone replacement therapy (TRT) and strength training (ST) on mitochondrial, glycogen, and lipid droplet (LD) content in skeletal muscle of aging men with subnormal bioavailable testosterone (BioT) levels. Mitochondrial, glycogen, and LD volume fractions in muscle biopsies were estimated by transmission electron microscopy. Insulin sensitivity (insulin-stimulated Rd) and body composition were assessed by euglycemic-hyperinsulinemic clamp and dual X-ray absorptiometry, respectively. TRT significantly increased total testosterone levels, BioT, and lean body mass (LBM) (p < 0.05), whereas percent body fat decreased (p < 0.05), and insulin sensitivity was unchanged. Baseline mitochondrial volume fraction correlated inversely with percent body fat (ρ = -0.43; p = 0.003). Δ-mitochondrial fraction correlated positively with Δ-total testosterone (ρ = 0.70; p = 0.02), and Δ-glycogen fraction correlated inversely with Δ-LBM (ρ = -0.83; p = 0.002) during six-month TRT, but no significant changes were observed in mitochondrial, glycogen, and LD volume fractions during TRT and ST. In conclusion, in this exploratory small-scale study, the beneficial effects of six-month TRT on total testosterone, LBM, and percent body fat were not followed by significant changes in fractions of mitochondria, glycogen, or lipid in skeletal muscle of aging men with lowered testosterone levels. Six-month ST or combined three-month ST+TRT did not change intramyocellular mitochondria, glycogen, and LD fractions compared to placebo. However, further studies with a larger sample size are needed.


Subject(s)
Hormone Replacement Therapy , Mitochondria/drug effects , Muscle, Skeletal/drug effects , Resistance Training , Testosterone/therapeutic use , Aged , Aging , Body Composition/drug effects , Double-Blind Method , Glycogen , Humans , Insulin Resistance , Lipid Droplets/drug effects , Male , Middle Aged
3.
Scand J Med Sci Sports ; 26(5): 488-97, 2016 May.
Article in English | MEDLINE | ID: mdl-25944268

ABSTRACT

The effects of short-term high-intensity exercise on single fiber contractile function in humans are unknown. Therefore, the purposes of this study were: (a) to access the acute effects of repeated high-intensity exercise on human single muscle fiber contractile function; and (b) to examine whether contractile function was affected by alterations in the redox balance. Eleven elite cross-country skiers performed four maximal bouts of 1300 m treadmill skiing with 45 min recovery. Contractile function of chemically skinned single fibers from triceps brachii was examined before the first and following the fourth sprint with respect to Ca(2+) sensitivity and maximal Ca(2+) -activated force. To investigate the oxidative effects of exercise on single fiber contractile function, a subset of fibers was incubated with dithiothreitol (DTT) before analysis. Ca(2+) sensitivity was enhanced by exercise in both MHC I (17%, P < 0.05) and MHC II (15%, P < 0.05) fibers. This potentiation was not present after incubation of fibers with DTT. Specific force of both MHC I and MHC II fibers was unaffected by exercise. In conclusion, repeated high-intensity exercise increased Ca(2+) sensitivity in both MHC I and MHC II fibers. This effect was not observed in a reducing environment indicative of an exercise-induced oxidation of the human contractile apparatus.


Subject(s)
Calcium/pharmacology , Exercise/physiology , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/physiology , Physical Exertion/physiology , Skiing/physiology , Adult , Antioxidants/metabolism , Arm , Cells, Cultured , Dithiothreitol/pharmacology , Glutathione/metabolism , Glutathione Disulfide/metabolism , Humans , Male , Muscle Contraction/drug effects , Oxidation-Reduction , Oxygen Consumption , Quadriceps Muscle/cytology , Random Allocation , Young Adult
4.
Acta Physiol (Oxf) ; 208(3): 265-73, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23480612

ABSTRACT

AIM: Prolonged muscle activity impairs whole-muscle performance and function. However, little is known about the effects of prolonged muscle activity on the contractile function of human single muscle fibres. The purpose of this study was to investigate the effects of prolonged exercise and subsequent recovery on the contractile function of single muscle fibres obtained from elite athletes. METHODS: Nine male triathletes (26 ± 1 years, 68 ± 1 mL O2  min(-1) kg(-1) , training volume 16 ± 1 h week(-1) ) performed 4 h of cycling exercise (at 73% of HRmax ) followed by 24 h of recovery. Biopsies from vastus lateralis were obtained before and following 4 h exercise and following 24 h recovery. Measurements comprised maximal Ca(2+) -activated specific force and Ca(2+) sensitivity of slow type I and fast type II single muscle fibres, as well as cycling peak power output. RESULTS: Following cycling exercise, specific force was reduced to a similar extent in slow and fast fibres (-15 and -18%, respectively), while Ca(2+) sensitivity decreased in fast fibres only. Single fibre-specific force was fully restored in both fibre types after 24 h recovery. Cycling peak power output was reduced by 4-9% following cycling exercise and fully restored following recovery. CONCLUSION: This is the first study to demonstrate that prolonged cycling exercise transiently impairs specific force in type I and II fibres and decreases Ca(2+) sensitivity in type II fibres only, specifically in elite endurance athletes. Further, the changes in single fibre-specific force induced by exercise and recovery coincided temporally with changes in cycling peak power output.


Subject(s)
Bicycling/physiology , Muscle Contraction/physiology , Muscle Fibers, Fast-Twitch/physiology , Muscle Fibers, Slow-Twitch/physiology , Muscle, Skeletal/physiology , Physical Endurance/physiology , Adult , Athletes , Calcium/physiology , Humans , Male , Oxygen Consumption/physiology , Physical Exertion/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...