Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(16): 12725-12737, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38616653

ABSTRACT

C-I bond extension and fission following ultraviolet (UV, 262 nm) photoexcitation of 2- and 3-iodothiophene is studied using ultrafast time-resolved extreme ultraviolet (XUV) ionization in conjunction with velocity map ion imaging. The photoexcited molecules and eventual I atom products are probed by site-selective ionization at the I 4d edge using intense XUV pulses, which induce multiple charges initially localized to the iodine atom. At C-I separations below the critical distance for charge transfer (CT), charge can redistribute around the molecule leading to Coulomb explosion and charged fragments with high kinetic energy. At greater C-I separations, beyond the critical distance, CT is no longer possible and the measured kinetic energies of the charged iodine atoms report on the neutral dissociation process. The time and momentum resolved measurements allow determination of the timescales and the respective product momentum and kinetic energy distributions for both isomers, which are interpreted in terms of rival 'direct' and 'indirect' dissociation pathways. The measurements are compared with a classical over the barrier model, which reveals that the onset of the indirect dissociation process is delayed by ∼1 ps relative to the direct process. The kinetics of the two processes show no discernible difference between the two parent isomers, but the branching between the direct and indirect dissociation channels and the respective product momentum distributions show isomer dependencies. The greater relative yield of indirect dissociation products from 262 nm photolysis of 3-iodothiophene (cf. 2-iodothiophene) is attributed to the different partial cross-sections for (ring-centred) π∗ ← π and (C-I bond localized) σ∗ ← (n/π) excitation in the respective parent isomers.

2.
Phys Chem Chem Phys ; 21(10): 5448-5454, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30793147

ABSTRACT

Hard X-ray electron spectroscopic study of iodine 1s and 2s photoionization of iodomethane (CH3I) and trifluoroiodomethane (CF3I) molecules is presented. The experiment was carried out at the SPring-8 synchrotron radiation facility in Japan. The results are analyzed with the aid of relativistic molecular and atomic calculations. It is shown that charge redistribution within the molecule is experimentally observable even for very deep levels and is a function of the number of electron vacancies. We also show that the analysis of Auger spectra subsequent to hard X-ray photoionization can be used to provide insight into charge distribution in molecules and highlight the necessity of quantum electrodynamics corrections in the prediction of core shell binding energies in molecules that contain heavy atoms.

3.
J Chem Phys ; 136(5): 054201, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22320735

ABSTRACT

Angle-resolved metastable fragments yields spectra have been measured in the N 1s ionization region of the N(2) and C 1s ionization region of CO. These spectra are compared with zero kinetic energy electron and photoelectron spectra. It has been shown that an isotropic metastable fragments yields spectra are almost identical with the ZEKE spectrum, whereas metastable fragments yields spectra with the Σ-Σ transition show similarity with photoelectron spectra. This means that these spectra clearly contain information about two shake-up mechanisms: conjugate and direct shake-up processes. All the peaks in the metastable photofragment spectra can be assigned as either satellite states or double/triple excitation states. Thus, it was shown that angle-resolved metastable photofragment spectroscopy could be used to help characterize multi-electron excitation states in general.

4.
J Chem Phys ; 125(19): 194307, 2006 Nov 21.
Article in English | MEDLINE | ID: mdl-17129103

ABSTRACT

Inner-shell excitation spectra and fragmentation of small clusters of formic acid have been studied in the oxygen K-edge region by time-of-flight fragment mass spectroscopy. In addition to several fragment cations smaller than the parent molecule, we have identified the production of HCOOH.H+ and H3O+ cations characteristic of proton transfer reactions within the clusters. Cluster-specific excitation spectra have been generated by monitoring the partial ion yields of the product cations. Resonance transitions of O1s(C[double bond]O/OH) electrons into pi(CO)* orbital in the preedge region were found to shift in energy upon clusterization. A blueshift of the O1s(C[double bond]O)-->pi(CO)* transition by approximately 0.2 eV and a redshift of the O1s(OH)-->pi(CO)* by approximately 0.6 eV were observed, indicative of strong hydrogen-bond formation within the clusters. The results have been compared with a recent theoretical calculation, which supports the conclusion that the formic-acid clusters consist of the most stable cyclic dimer andor trimer units. Specifically labeled formic acid-d, HCOOD, was also used to examine the core-excited fragmentation mechanisms. These deuterium-labeled experiments showed that HDO+ was formed via site-specific migration of a formyl hydrogen within an individual molecule, and that HD2O+ was produced via the subsequent transfer of a deuterium atom from the hydroxyl group of a nearest-neighbor molecule within a cationic cluster. Deuteron (proton) transfer from the hydroxyl site of a hydrogen-bond partner was also found to take place, producing deuteronated HCOOD.D+ (protonated HCOOH.H+) cations within the clusters.

SELECTION OF CITATIONS
SEARCH DETAIL
...