Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biomicrofluidics ; 15(3): 034108, 2021 May.
Article in English | MEDLINE | ID: mdl-34084258

ABSTRACT

Many motile bacteria are propelled by the rotation of flagellar filaments. This rotation is driven by a membrane protein known as the stator-complex, which drives the rotor of the bacterial flagellar motor. Torque generation is powered in most cases by proton transit through membrane protein complexes known as stators, with the next most common ionic power source being sodium. Sodium-powered stators can be studied through the use of synthetic chimeric stators that combine parts of sodium- and proton-powered stator proteins. The most well studied example is the use of the sodium-powered PomA-PotB chimeric stator unit in the naturally proton-powered Escherichia coli. Here we designed a fluidics system at low cost for rapid prototyping to separate motile and non-motile populations of bacteria while varying the ionic composition of the media and thus the sodium-motive force available to drive this chimeric flagellar motor. We measured separation efficiencies at varying ionic concentrations and confirmed using fluorescence that our device delivered eightfold enrichment of the motile proportion of a mixed population. Furthermore, our results showed that we could select bacteria from reservoirs where sodium was not initially present. Overall, this technique can be used to implement the selection of highly motile fractions from mixed liquid cultures, with applications in directed evolution to investigate the adaptation of motility in bacterial ecosystems.

2.
Biosens Bioelectron ; 158: 112162, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32275213

ABSTRACT

Bioluminescence resonance energy transfer (BRET) is a sensitive optical detection method that can monitor changes in the relative orientation and the physical proximity of molecules in real-time. Since the light is generated internally by a bioluminescent protein, BRET does not rely on an external light source. The use of BRET simultaneously simplifies the hardware required for sensing and offers improved detection limits and sensitivity for applications targeting point-of-care bio-sensing. In this paper, we report a compact micro reactor integrating a thermostat with a re-useable glass-chip comprising a chaotic mixer, an incubation channel and optical detection chamber. The device was optimised to detect thrombin activities in serum, achieving a thrombin detection limit of 38 µU/µl in 10% (v/v) human serum in a 5 min assay time. This is a 90% assay time reduction, compared with previous BRET-based work or other technologies. It matches sensitivity levels achieved when the assay is deployed on a commercially available plate-reader. The device can be used continuously with low concentrations (3.4 µM) of luciferase substrate. The low cost associated with this approach, low interference from human serum and other proteases and good reproducibility (CV = 0.2-3.6%), establish new performance standards for point-of-care diagnostics with samples of human serum. Importantly, measuring protease activity levels, rather than concentrations, is the most informative approach for clinical diagnostics. Of the recently reported ultra-sensitive thrombin sensing techniques, this is the only one to measure thrombin activity in serum dilutions, rather than simply quantifying thrombin concentrations.


Subject(s)
Bioluminescence Resonance Energy Transfer Techniques , Biomarkers/blood , Biosensing Techniques , Lab-On-A-Chip Devices , Luminescent Measurements/instrumentation , Luminescent Measurements/methods , Thrombin , Equipment Design , Genes, Reporter , Humans , Luminescent Proteins , Point-of-Care Testing , Reproducibility of Results , Sensitivity and Specificity , Thrombin/metabolism
3.
Microb Cell ; 7(3): 66-79, 2020 Jan 15.
Article in English | MEDLINE | ID: mdl-32161767

ABSTRACT

The microbial environment is typically within a fluid and the key processes happen at the microscopic scale where viscosity dominates over inertial forces. Microfluidic tools are thus well suited to study microbial motility because they offer precise control of spatial structures and are ideal for the generation of laminar fluid flows with low Reynolds numbers at microbial lengthscales. These tools have been used in combination with microscopy platforms to visualise and study various microbial taxes. These include establishing concentration and temperature gradients to influence motility via chemotaxis and thermotaxis, or controlling the surrounding microenvironment to influence rheotaxis, magnetotaxis, and phototaxis. Improvements in microfluidic technology have allowed fine separation of cells based on subtle differences in motility traits and have applications in synthetic biology, directed evolution, and applied medical microbiology.

4.
Micromachines (Basel) ; 11(3)2020 Mar 17.
Article in English | MEDLINE | ID: mdl-32192094

ABSTRACT

The investigation of clandestine laboratories poses serious hazards for first responders, emergency services, investigators and the surrounding public due to the risk of exposure to volatile organic compounds (VOCs) used in the manufacture of illicit substances. A novel gas sampling interface using open microfluidic channels that enables the extraction of VOCs out of the gas phase and into a liquid, where it can be analysed by conventional detection systems, has recently been developed. This paper investigates the efficiency and effectiveness of such a gas-to-liquid (GTL) extraction system for the extraction of amphetamine-type substances (ATS) and their precursors from the vapour phase. The GTL interface was evaluated across a range of different ATS and their precursors (methamphetamine, dimethylamphetamine, N-formylmethamphetamine, benzaldehyde, phenyl-2-propanone, ephedrine and pseudoephedrine) at concentrations ranging between 10 and 32 mg m-3. These gas samples were produced by a gas generation system directly in Tedlar® bags and gas canisters for controlled volume sampling. When using gas sampled from Tedlar® bags, four of the seven compounds were able to be extracted by the GTL interface, with the majority of the VOCs having extraction yields between 0.005% and 4.5%, in line with the results from an initial study. When samples were taken from gas canisters, only benzaldehyde was able to be detected, with extraction efficiencies between 0.2% and 0.4%. A custom-built mount for the GTL interface helped to automate the extraction process, with the aim of increasing extraction efficiency or reducing variability. However, the extraction efficiency did not improve when using this accessory, but the procedure did become more efficient. The results from the study indicated that the GTL interface could be employed for the collection of gaseous ATS and incorporated into mobile detection systems for onsite collection and analysis of volatile compounds related to ATS manufacture.

5.
Micromachines (Basel) ; 10(7)2019 Jul 19.
Article in English | MEDLINE | ID: mdl-31331015

ABSTRACT

Chemosensory protein based olfactory biosensors are expected to play a significant role in next-generation volatile organic compound (VOC) detection systems due to their ultra-high sensitivity and selectivity. As these biosensors can perform most efficiently in aqueous environments, the detection systems need to incorporate a gas sampling interface for gas-to-liquid extraction. This interface should extract the VOCs from the gas phase with high efficiency and transfer them into the liquid containing biosensors to enable subsequent detection. To design such a transfer interface, an understanding of the key parameters influencing the gas-to-liquid extraction efficiency of target VOCs is crucial. This paper reports a gas sampling interface system based on a microfluidic open-channel device for gas-to-liquid extraction. By using this device as a model platform, the key parameters dictating the VOC extraction efficiency were identified. When loaded with 30 µL of capture liquid, the microfluidic device generates a gas-liquid interface area of 3 cm2 without using an interfacial membrane. The pumpless operation based on capillary flow was demonstrated for capture liquid loading and collection. Gas samples spiked with lipophilic model volatiles (hexanal and allyl methyl sulfide) were used for characterization of the VOC extraction efficiency. Decreasing the sampling temperature to 15 °C had a significant impact on increasing capture efficiency, while variation in the gas sampling flow rate had no significant impact in the range between 40-120 mL min-1. This study found more than a 10-fold increase in capture efficiency by chemical modification of the capture liquid with alpha-cyclodextrin. The highest capture efficiency of 30% was demonstrated with gas samples spiked with hexanal to a concentration of 16 ppm (molar proportion). The approach in this study should be useful for further optimisation of miniaturised gas-to-liquid extraction systems and contribute to the design of chemosensory protein-based VOC detection systems.

6.
Platelets ; 28(7): 649-656, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28067095

ABSTRACT

Blood transfusion services face an ever-increasing demand for donor platelets to meet clinical needs. Whilst strategies for increasing platelet storage life and improving the efficiency of donor platelet collection are important, in the longer term, platelets generated by bio-manufacturing processes will be required to meet demands. Production of sufficient numbers of in vitro-derived platelets for transfusion represents a significant bioengineering challenge. In this review, we highlight recent progress in this area of research and outline the main technical and biological obstacles that need to be met before this becomes feasible and economic. A critical consideration is assurance of the functional properties of these cells as compared to their fresh, donor collected, counterparts. We contend that platelet-like particles and in vitro-derived platelets that phenotypically resemble fresh platelets must deliver the same functions as these cells upon transfusion. We also note recent progress with immortalized megakaryocyte progenitor cell lines, molecular strategies for reducing expression of HLA Class I to generate universal donor platelets and the move to early clinical studies with in vitro-derived platelets.


Subject(s)
Blood Platelets/cytology , Cell Culture Techniques , Megakaryocytes/cytology , Platelet Transfusion/standards , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/immunology , Blood Platelets/immunology , Cell Dedifferentiation/drug effects , Cell Differentiation/drug effects , Cell Line, Transformed , Cytokines/pharmacology , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/immunology , Gene Silencing , Histocompatibility Antigens Class I/genetics , Histocompatibility Antigens Class I/immunology , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/immunology , Intercellular Signaling Peptides and Proteins/pharmacology , Megakaryocytes/drug effects , Megakaryocytes/immunology , Microfluidics/instrumentation , Microfluidics/methods , Platelet Transfusion/statistics & numerical data
7.
IET Nanobiotechnol ; 10(3): 124-8, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27256891

ABSTRACT

Optical tweezers are powerful tools for manipulating single DNA molecules using fluorescence microscopy, particularly in nanotechnology-based DNA analysis. We previously proposed a manipulation technique using microstructures driven by optical tweezers that allows the handling of single giant DNA molecules of millimetre length that cannot be manipulated by conventional techniques. To further develop this technique, the authors characterised the microstructures quantitatively from the view point of fabrication and efficiency of DNA manipulation under a fluorescence microscope. The success rate and precision of the fabrications were evaluated. The results indicate that the microstructures are obtained in an aqueous solution with a precision ∼50 nm at concentrations in the order of 10(6) particles/ml. The visibility of these microstructures under a fluorescence microscope was also characterised, along with the elucidation of the fabrication parameters needed to fine tune visibility. Manipulating yeast chromosomal DNA molecules with the microstructures illustrated the relationship between the efficiency of manipulation and the geometrical shape of the microstructure. This report provides the guidelines for designing microstructures used in single DNA molecule analysis based on on-site DNA manipulation, and is expected to broaden the applications of this technique in the future.


Subject(s)
DNA/chemistry , Microscopy, Fluorescence/instrumentation , Microtechnology/instrumentation , Optical Tweezers , Equipment Design
8.
Biosens Bioelectron ; 62: 177-81, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-24999995

ABSTRACT

We have previously shown that a genetically encoded bioluminescent resonance energy transfer (BRET) biosensor, comprising maltose binding protein (MBP) flanked by a green fluorescent protein (GFP(2)) at the N-terminus and a variant of Renilla luciferase (RLuc2) at the C-terminus, has superior sensitivity and limits of detection for maltose, compared with an equivalent fluorescent resonance energy transfer (FRET) biosensor. Here, we demonstrate that the same MBP biosensor can be combined with a microfluidic system for detection of maltose in water or beer. Using the BRET-based biosensor, maltose in water was detected on a microfluidic chip, either following a pre-incubation step or in real-time with similar sensitivity and dynamic range to those obtained using a commercial 96-well plate luminometer. The half-maximal effective concentrations (EC50) were 2.4×10(-7)M and 1.3×10(-7) M for maltose detected in pre-incubated and real-time reactions, respectively. To demonstrate real-time detection of maltose in a complex medium, we used it to estimate maltose concentration in a commercial beer sample in a real-time, continuous flow format. Our system demonstrates a promising approach to in-line monitoring for applications such as food and beverage processing.


Subject(s)
Bioluminescence Resonance Energy Transfer Techniques/methods , Biosensing Techniques/methods , Maltose/analysis , Microfluidic Analytical Techniques/methods , Beer/analysis , Computer Systems , Green Fluorescent Proteins , Luciferases, Renilla , Maltose-Binding Proteins , Water
9.
Sci Rep ; 4: 4123, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24535122

ABSTRACT

In living tissues, a cell is exposed to chemical substances delivered partially to its surface. Such a heterogeneous chemical environment potentially induces cell polarity. To evaluate this effect, we developed a microfluidic device that realizes spatially confined delivery of chemical substances at subcellular resolution. Our microfluidic device allows simple setup and stable operation for over 4 h to deliver chemicals partially to a single cell. Using the device, we showed that subcellular glucose exposure triggers an intracellular [Ca(2+)] change in the ß-cells. In addition, the imaging of a cell expressing GFP-tagged insulin showed that continuous subcellular exposure to glucose biased the spatial distribution of insulin granules toward the site where the glucose was delivered. Our approach illustrates an experimental technique that will be applicable to many biological experiments for imaging the response to subcellular chemical exposure and will also provide new insights about the development of polarity of ß-cells.


Subject(s)
Cytoplasmic Granules/metabolism , Glucose/metabolism , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Animals , Cell Line , Mice
10.
Biomicrofluidics ; 8(6): 064110, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25553187

ABSTRACT

Bioluminescence resonance energy transfer (BRET) is a form of Förster resonance energy transfer. BRET has been shown to support lower limits of detection than fluorescence resonance energy transfer (FRET) but, unlike FRET, has not been widely implemented on microfluidic devices for bioanalytical sensing. We recently reported a microscope-based microfluidic system for BRET-based biosensing, using a hybrid, high quantum-efficiency, form of BRET chemistry. This paper reports the first optical fiber-based system for BRET detection on a microfluidic chip, capable of quantifying photon emissions from the low quantum-efficiency BRET(2) system. We investigated the effects of varying core diameter and numerical aperture of optical fibers, as well as varying microfluidic channel design and measurement conditions. We optimized the set-up in order to maximize photon counts and minimize the response time. The optimized conditions supported measurement of thrombin activity, with a limit of detection of 20 pM, which is lower than the microscope-based system and more than 20 times lower than concentrations reported to occur in plasma clots.

11.
Electrophoresis ; 32(18): 2496-501, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21874655

ABSTRACT

In this paper, we present a novel electrofusion device that enables massive parallelism, using an electrically insulating sheet having a two-dimensional micro-orifice array. The sheet is sandwiched by a pair of micro-chambers with immersed electrodes, and each chamber is filled with the suspensions of the two types of cells to be fused. Dielectrophoresis, assisted by sedimentation, is used to position the cells in the upper chamber down onto the orifices, then the device is flipped over to position the cells on the other side, so that cell pairs making contact in the orifice are formed. When a pulse voltage is applied to the electrodes, most voltage drop occurs around the orifice and impressed on the cell membrane in the orifice. This makes possible the application of size-independent voltage to fuse two cells in contact at all orifices exclusively in 1:1 manner. In the experiment, cytoplasm of one of the cells is stained with a fluorescence dye, and the transfer of the fluorescence to the other cell is used as the indication of fusion events. The two-dimensional orifice arrangement at the pitch of 50 µm realizes simultaneous fusion of 6 × 10³ cells on a 4 mm diameter chip, and the fusion yield of 78-90% is achieved for various sizes and types of cells.


Subject(s)
Cell Fusion/instrumentation , Cell Fusion/methods , Electrophoresis/instrumentation , Microfluidic Analytical Techniques/instrumentation , Microfluidic Analytical Techniques/methods , Tissue Array Analysis/instrumentation , Animals , Cell Line, Tumor , Electrodes , Equipment Design , Fluoresceins/chemistry , Humans , Mice , Particle Size
12.
Biomicrofluidics ; 4(2)2010 Jun 29.
Article in English | MEDLINE | ID: mdl-20697592

ABSTRACT

Micro-orifice based cell fusion assures high-yield fusion without compromising the cell viability. This paper examines feasibility of a dielectrophoresis (DEP) assisted cell trapping method for parallel fusion with a micro-orifice array. The goal is to create viable fusants for studying postfusion cell behavior. We fabricated a microfluidic chip that contained a chamber and partition. The partition divided the chamber into two compartments and it had a number of embedded micro-orifices. The voltage applied to the electrodes located at each compartment generated an electric field distribution concentrating in micro-orifices. Cells introduced into each compartment moved toward the micro-orifice array by manipulation of hydrostatic pressure. DEP assisted trapping was used to keep the cells in micro-orifice and to establish cell to cell contact through orifice. By applying a pulse, cell fusion was initiated to form a neck between cells. The neck passing through the orifice resulted in immobilization of the fused cell pair at micro-orifice. After washing away the unfused cells, the chip was loaded to a microscope with stage top incubator for time lapse imaging of the selected fusants. The viable fusants were successfully generated by fusion of mouse fibroblast cells (L929). Time lapse observation of the fusants showed that fused cell pairs escaping from micro-orifice became one tetraploid cell. The generated tetraploid cells divided into three daughter cells. The fusants generated with a smaller micro-orifice (diameter approximately 2 mum) were kept immobilized at micro-orifice until cell division phase. After observation of two synchronized cell divisions, the fusant divided into four daughter cells. We conclude that the presented method of cell pairing and fusion is suitable for high-yield generation of viable fusants and furthermore, subsequent study of postfusion phenomena.

13.
Langmuir ; 21(24): 11251-61, 2005 Nov 22.
Article in English | MEDLINE | ID: mdl-16285798

ABSTRACT

We propose a force measurement method for evaluating the binding force between microscale flat surfaces in an aqueous solution. Using force-sensing piezoresistive cantilevers with sub-nanonewton force resolution, we have directly measured binding forces between SiO2-SiO2 microcontacts, which were created by gravity-driven random collision between microfabricated SiO2 cylindrical particles and a planar SiO2 substrate in a HCl solution. First, to examine our method we measured the pH dependence of the binding force. The binding forces were 12 and 5.8 nN at pH 1.0 and 2.0, respectively. As the pH increased, the binding force decreased and became zero at pH greater than 3.0. We confirmed that the bindings were based on the van der Waals' (VDW) force at pH 2.0 or less whereas a repulsive double-layer force acted between the surfaces at pH 3.0 or more. Second, the binding forces were categorized into a friction force or an adhesion force between the particles and the substrate. In the measurement, the friction force between the particle and the substrate was measured in the case when the particle slid on the substrate. On the contrary, the adhesion force was measured when the particle came off the substrate. Whether the particle slid or came off depended on the aspect ratio of the particle. We fabricated cylindrical particles with an aspect ratio of 0.03-2.0 and distinguished the friction force from the adhesion force by changing the aspect ratio of the particles. As a result, the friction force per unit contact area between SiO2-SiO2 flat surfaces was found to be 330 pN/microm2 +/- 20% when we used particles with a low aspect ratio (<0.1), and the adhesion force per unit contact area was 90 pN/microm2 +/- 20% for particles with a high aspect ratio (>0.4). For fluidic self-assembly that utilizes microscale surface contact in a liquid, our measurement method is an effective tool for studying and developing systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...