Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Nat Commun ; 15(1): 4766, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834603

ABSTRACT

Self-healing smart grids are characterized by fast-acting, intelligent control mechanisms that minimize power disruptions during outages. The corrective actions adopted during outages in power distribution networks include reconfiguration through switching control and emergency load shedding. The conventional decision-making models for outage mitigation are, however, not suitable for smart grids due to their slow response and computational inefficiency. Here, we present a graph reinforcement learning model for outage management in the distribution network to enhance its resilience. The distinctive characteristic of our approach is that it explicitly accounts for the underlying network topology and its variations with switching control, while also capturing the complex interdependencies between state variables (along nodes and edges) by modeling the task as a graph learning problem. Our model learns the optimal control policy for power restoration using a Capsule-based graph neural network. We validate our model on three test networks, namely the 13, 34, and 123-bus modified IEEE networks where it is shown to achieve near-optimal, real-time performance. The resilience improvement of our model in terms of loss of energy is 607.45 kWs and 596.52 kWs for 13 and 34 buses, respectively. Our model also demonstrates generalizability across a broad range of outage scenarios.

2.
Proc Natl Acad Sci U S A ; 121(1): e2313171120, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38147553

ABSTRACT

Networks allow us to describe a wide range of interaction phenomena that occur in complex systems arising in such diverse fields of knowledge as neuroscience, engineering, ecology, finance, and social sciences. Until very recently, the primary focus of network models and tools has been on describing the pairwise relationships between system entities. However, increasingly more studies indicate that polyadic or higher-order group relationships among multiple network entities may be the key toward better understanding of the intrinsic mechanisms behind the functionality of complex systems. Such group interactions can be, in turn, described in a holistic manner by simplicial complexes of graphs. Inspired by these recently emerging results on the utility of the simplicial geometry of complex networks for contagion propagation and armed with a large-scale synthetic social contact network (also known as a digital twin) of the population in the U.S. state of Virginia, in this paper, we aim to glean insights into the role of higher-order social interactions and the associated varying social group determinants on COVID-19 propagation and mitigation measures.


Subject(s)
COVID-19 , Epidemics , Humans , COVID-19/epidemiology , Virginia
3.
Article in English | MEDLINE | ID: mdl-35865106

ABSTRACT

Blockchain is an emerging technology that has enabled many applications, from cryptocurrencies to digital asset management and supply chains. Due to this surge of popularity, analyzing the data stored on blockchains poses a new critical challenge in data science. To assist data scientists in various analytic tasks for a blockchain, in this tutorial, we provide a systematic and comprehensive overview of the fundamental elements of blockchain network models. We discuss how we can abstract blockchain data as various types of networks and further use such associated network abstractions to reap important insights on blockchains' structure, organization, and functionality. This article is categorized under:Technologies > Data PreprocessingApplication Areas > Business and IndustryFundamental Concepts of Data and Knowledge > Data ConceptsFundamental Concepts of Data and Knowledge > Knowledge Representation.

4.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article in English | MEDLINE | ID: mdl-34006639

ABSTRACT

Multilayer networks continue to gain significant attention in many areas of study, particularly due to their high utility in modeling interdependent systems such as critical infrastructures, human brain connectome, and socioenvironmental ecosystems. However, clustering of multilayer networks, especially using the information on higher-order interactions of the system entities, still remains in its infancy. In turn, higher-order connectivity is often the key in such multilayer network applications as developing optimal partitioning of critical infrastructures in order to isolate unhealthy system components under cyber-physical threats and simultaneous identification of multiple brain regions affected by trauma or mental illness. In this paper, we introduce the concepts of topological data analysis to studies of complex multilayer networks and propose a topological approach for network clustering. The key rationale is to group nodes based not on pairwise connectivity patterns or relationships between observations recorded at two individual nodes but based on how similar in shape their local neighborhoods are at various resolution scales. Since shapes of local node neighborhoods are quantified using a topological summary in terms of persistence diagrams, we refer to the approach as clustering using persistence diagrams (CPD). CPD systematically accounts for the important heterogeneous higher-order properties of node interactions within and in-between network layers and integrates information from the node neighbors. We illustrate the utility of CPD by applying it to an emerging problem of societal importance: vulnerability zoning of residential properties to weather- and climate-induced risks in the context of house insurance claim dynamics.

5.
Proc Natl Acad Sci U S A ; 116(39): 19368-19373, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31511422

ABSTRACT

Network motifs are often called the building blocks of networks. Analysis of motifs has been found to be an indispensable tool for understanding local network structure, in contrast to measures based on node degree distribution and its functions that primarily address a global network topology. As a result, networks that are similar in terms of global topological properties may differ noticeably at a local level. This phenomenon of the impact of local structure has been recently documented in network fragility analysis and classification. At the same time, many studies of networks still tend to focus on global topological measures, often failing to unveil hidden mechanisms behind vulnerability of real networks and their dynamic response to malfunctions. In this paper, a study of motif-based analysis of network resilience and reliability under various types of intentional attacks is presented, with the goal of shedding light on local dynamics and vulnerability of networks. These methods are demonstrated on electricity transmission networks of 4 European countries, and the results are compared with commonly used resilience and reliability measures.

6.
Epidemics ; 28: 100345, 2019 09.
Article in English | MEDLINE | ID: mdl-31182294

ABSTRACT

Influenza is one of the main causes of death, not only in the USA but worldwide. Its significant economic and public health impacts necessitate development of accurate and efficient algorithms for forecasting of any upcoming influenza outbreaks. Most currently available methods for influenza prediction are based on parametric time series and regression models that impose restrictive and often unverifiable assumptions on the data. In turn, more flexible machine learning models and, particularly, deep learning tools whose utility is proven in a wide range of disciplines, remain largely under-explored in epidemiological forecasting. We study the seasonal influenza in Dallas County by evaluating the forecasting ability of deep learning with feedforward neural networks as well as performance of more conventional statistical models, such as beta regression, autoregressive integrated moving average (ARIMA), least absolute shrinkage and selection operators (LASSO), and non-parametric multivariate adaptive regression splines (MARS) models for one week and two weeks ahead forecasting. Furthermore, we assess forecasting utility of Google search queries and meteorological data as exogenous predictors of influenza activity. Finally, we develop a probabilistic forecasting of influenza in Dallas County by fusing all the considered models using Bayesian model averaging.


Subject(s)
Deep Learning , Influenza, Human/epidemiology , Bayes Theorem , Disease Outbreaks , Forecasting , Humans , Models, Statistical , Public Health , Texas
7.
Sci Rep ; 7(1): 5807, 2017 07 19.
Article in English | MEDLINE | ID: mdl-28724937

ABSTRACT

We propose a new method of nonparametric bootstrap to quantify estimation uncertainties in functions of network degree distribution in large ultra sparse networks. Both network degree distribution and network order are assumed to be unknown. The key idea is based on adaptation of the "blocking" argument, developed for bootstrapping of time series and re-tiling of spatial data, to random networks. We first sample a set of multiple ego networks of varying orders that form a patch, or a network block analogue, and then resample the data within patches. To select an optimal patch size, we develop a new computationally efficient and data-driven cross-validation algorithm. The proposed fast patchwork bootstrap (FPB) methodology further extends the ideas for a case of network mean degree, to inference on a degree distribution. In addition, the FPB is substantially less computationally expensive, requires less information on a graph, and is free from nuisance parameters. In our simulation study, we show that the new bootstrap method outperforms competing approaches by providing sharper and better-calibrated confidence intervals for functions of a network degree distribution than other available approaches, including the cases of networks in an ultra sparse regime. We illustrate the FPB in application to collaboration networks in statistics and computer science and to Wikipedia networks.

8.
PLoS One ; 12(5): e0176690, 2017.
Article in English | MEDLINE | ID: mdl-28464015

ABSTRACT

BACKGROUND: The objective of this study is to investigate predictive utility of online social media and web search queries, particularly, Google search data, to forecast new cases of influenza-like-illness (ILI) in general outpatient clinics (GOPC) in Hong Kong. To mitigate the impact of sensitivity to self-excitement (i.e., fickle media interest) and other artifacts of online social media data, in our approach we fuse multiple offline and online data sources. METHODS: Four individual models: generalized linear model (GLM), least absolute shrinkage and selection operator (LASSO), autoregressive integrated moving average (ARIMA), and deep learning (DL) with Feedforward Neural Networks (FNN) are employed to forecast ILI-GOPC both one week and two weeks in advance. The covariates include Google search queries, meteorological data, and previously recorded offline ILI. To our knowledge, this is the first study that introduces deep learning methodology into surveillance of infectious diseases and investigates its predictive utility. Furthermore, to exploit the strength from each individual forecasting models, we use statistical model fusion, using Bayesian model averaging (BMA), which allows a systematic integration of multiple forecast scenarios. For each model, an adaptive approach is used to capture the recent relationship between ILI and covariates. RESULTS: DL with FNN appears to deliver the most competitive predictive performance among the four considered individual models. Combing all four models in a comprehensive BMA framework allows to further improve such predictive evaluation metrics as root mean squared error (RMSE) and mean absolute predictive error (MAPE). Nevertheless, DL with FNN remains the preferred method for predicting locations of influenza peaks. CONCLUSIONS: The proposed approach can be viewed a feasible alternative to forecast ILI in Hong Kong or other countries where ILI has no constant seasonal trend and influenza data resources are limited. The proposed methodology is easily tractable and computationally efficient.


Subject(s)
Forecasting/methods , Influenza, Human/epidemiology , Internet , Models, Statistical , Public Health Surveillance/methods , Bayes Theorem , Hong Kong/epidemiology , Humans , Machine Learning , Neural Networks, Computer , Time Factors , Weather
9.
Comput Methods Programs Biomed ; 110(3): 455-70, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23566710

ABSTRACT

In this paper we discuss the SIMID tool for simulation of the spread of infectious disease, enabling spatio-temporal visualization of the dynamics of influenza outbreaks. SIMID is based on modern random network methodology and implemented within the R and GIS frameworks. The key advantage of SIMID is that it allows not only for the construction of a possible scenario for the spread of an infectious disease but also for the assessment of mitigation strategies, variation and uncertainty in disease parameters and randomness in the progression of an outbreak. We illustrate SIMID by application to an influenza epidemic simulation in a population constructed to resemble the Region of Peel, Ontario, Canada.


Subject(s)
Communicable Diseases/epidemiology , Communicable Diseases/transmission , Public Health Surveillance/methods , Adult , Algorithms , Child , Computer Simulation , Disease Outbreaks/statistics & numerical data , Family , Female , Humans , Infection Control/statistics & numerical data , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Influenza, Human/transmission , Male , Ontario/epidemiology , Schools , Software , Vaccination
10.
J Biopharm Stat ; 21(6): 1100-12, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22023679

ABSTRACT

The classical two-sample t-test assumes that observations are independent. A violation of this assumption could lead to unreliable or even erroneous conclusions. However, in many biological studies, data are recorded over time and hence exhibit serial correlation. In order to take such temporal dependence into account, we suggest applying the sieve bootstrap method to generate replications of the observed data and then using these proxy-dependent processes to construct the empirical distribution for the t-statistic. The proposed method is fast, distribution-free, and well approximates the nominal significance level. We illustrate our approach in application to detection problem of brain activity in functional magnetic resonance imaging (fMRI) and a longitudinal study of weight growth in rats.


Subject(s)
Brain Mapping/methods , Computer Simulation/standards , Sample Size , Animals , Humans , Models, Statistical , Observer Variation , Rats , Statistics as Topic/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...