Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Adv ; 6(27): eaaz3125, 2020 07.
Article in English | MEDLINE | ID: mdl-32923582

ABSTRACT

Bacterial biomineralization is a widespread process that affects cycling of metals in the environment. Functionalized bacterial cell surfaces and exopolymers are thought to initiate mineral formation, however, direct evidences are hampered by technical challenges. Here, we present a breakthrough in the use of liquid-cell scanning transmission electron microscopy to observe mineral growth on bacteria and the exopolymers they secrete. Two Escherichia coli mutants producing distinct exopolymers are investigated. We use the incident electron beam to provoke and observe the precipitation of Mn-bearing minerals. Differences in the morphology and distribution of Mn precipitates on the two strains reflect differences in nucleation site density and accessibility. Direct observation under liquid conditions highlights the critical role of bacterial cell surface charges and exopolymer types in metal mineralization. This has strong environmental implications because biofilms structured by exopolymers are widespread in nature and constitute the main form of microbial life on Earth.


Subject(s)
Biofilms , Extracellular Polymeric Substance Matrix , Bacteria/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Metals , Minerals/metabolism
2.
J Environ Radioact ; 220-221: 106317, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32560877

ABSTRACT

This study focuses on the determination of field solid/liquid ratios (Rd) values of trace element (TE) and radionuclide (RN) in the Seine River (France) during a concerted low radioactivity level liquid regulatory discharge performed by a Nuclear Power Plant (NPP) and their confrontation with Kd values calculated from geochemical modeling. This research focuses on how field Rd measurements of TE and RN can be representative of Kd values and how Kd models should be improved. For this purpose 5 sampling points of the Seine River during a NPP's liquid discharge were investigated: upstream from the discharge in order to assess the natural background values in the area of effluent discharge, the total river water mixing distance (with transect sampling), and 2 points downstream from this last area. The main parameters required determining field Rd of TE and RN and their geochemical modeling (Kd) were acquired. Filtered waters were analyzed for alkalinity, anions, cations, dissolved organic carbon (DOC), TE, and RN concentrations. Suspended particulate matter (SPM) was analyzed for particulate organic carbon (POC), TE and RN concentrations and mineralogical composition. Field Rd and Kd values are in good agreement for stable Cd, Cu, Ni, Pb and Zn and for 7Be. Conversely, measured field Rd for stable Ag, Ba, Sr, Co and Cs are systematically higher than modeled Kd values. Even if only the lowest possible values were obtained for 137Cs and 60Co Rd measurements, these estimated limits are higher than calculated Kd for 137Cs and in good agreement for 60Co. Finally, only two RN exhibit field Rd lower than calculated Kd: 234Th and 210Pb. Comparison of field Rd vs. modeled Kd values for TE and RN allows the identification, for each element, of the main involved adsorption phases and geochemical mechanisms controlling their fate and partitioning in river systems.


Subject(s)
Nuclear Power Plants , Radiation Monitoring , Environmental Monitoring , France , Trace Elements , Water Pollutants, Chemical
3.
Water Res ; 176: 115722, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-32247257

ABSTRACT

This study focused on surface waters from three small creeks, within the Seine River watershed, which are characterized by different land-uses, namely forested, agricultural and urban. Silver nanoparticles (Ag-NPs) in these waters were detected and quantified by single-particle ICPMS during one-year of monthly sampling. Their temporal and spatial variations were investigated. Ag-NPs, in the three types of surface water, were found to range from 1.5 × 107 to 2.3 × 109 particles L-1 and from 0.4 to 28.3 ng L-1 at number and mass concentrations, respectively. These values are in consistent with the very few previous studies. In addition, the role of factors driving process and potential sources are discussed with correlations between Ag-NPs concentrations and biogeochemical parameters, like dissolved organic carbon concentration and divalent cations concentrations. For the forested watershed NOM controls the stability (number and mass) of the Ag-NPs as recently observed in the field in lake water in Germany. In the case of the agricultural and urban watersheds major cations such as Ca would control the number and mass of Ag-NPs. Dilution processes are rejected as conductivity and Cl- ions do not show significant correlations with Ag-NPs or other major geochemical parameters. The specific exportation rates of Ag-NPs for artificial, agricultural and forested areas were calculated based on the monthly data for the full year and are equal to 5.5 ± 3.0, 0.5 ± 0.3 and 0.2 ± 0.2 gy-1km-2, respectively. These data suggest a constant release of Ag-NPs from consumer products into freshwaters in artificial areas, for instance, from textiles, washing machines, domestic tap-water filters, outdoor paints. These first data of Ag-NPs fluxes in surface waters of France enlarge the very limited database of field measurements. Moreover, for the first time, the influence of time, land-use and aquatic geochemistry parameters on Ag-NPs in real natural water samples is reported. It is also helpful to further understand the fate and the process of Ag-NPs in natural waters, as well as to the ecotoxicity studies in real-world environment.


Subject(s)
Metal Nanoparticles , Water Pollutants, Chemical , France , Germany , Silver
4.
Sci Rep ; 10(1): 1883, 2020 02 05.
Article in English | MEDLINE | ID: mdl-32024904

ABSTRACT

Surface Enhanced Raman Scattering (SERS) has been widely praised for its extreme sensitivity but has not so far been put to use in routine analytical applications, with the accessible scale of measurements a limiting factor. We report here on a frugal implementation of SERS dedicated to the quantitative detection of Zn2+ in water, Zn being an element that can serve as an indicator of contamination by heavy metals in aquatic bodies. The method consists in randomly aggregating simple silver colloids in the analyte solution in the presence of a complexometric indicator of Zn2+, recording the SERS spectrum with a portable Raman spectrometer and analysing the data using multivariate calibration models. The frugality of the sensing procedure enables us to acquire a dataset much larger than conventionally done in the field of SERS, which in turn allows for an in-depth statistical analysis of the analytical performances that matter to end-users. In pure water, the proposed sensor is sensitive and accurate in the 160-2230 nM range, with a trueness of 96% and a precision of 4%. Although its limit of detection is one order of magnitude higher than those of golden standard techniques for quantifying metals, its sensitivity range matches Zn levels that are relevant to the health of aquatic bodies. Moreover, its frugality positions it as an interesting alternative to monitor water quality. Critically, the combination of the simple procedure for sample preparation, abundant SERS material and affordable portable instrument paves the way for a realistic deployment to the water site, with each Zn reading three to five times cheaper than through conventional techniques. It could therefore complement current monitoring methods in a bid to solve the pressing needs for large scale water quality data.

5.
Environ Microbiol ; 22(3): 823-831, 2020 03.
Article in English | MEDLINE | ID: mdl-31187921

ABSTRACT

Magnetotactic bacteria (MTB) are ubiquitous aquatic microorganisms that mineralize dissolved iron into intracellular magnetic crystals. After cell death, these crystals are trapped into sediments that remove iron from the soluble pool. MTB may significantly impact the iron biogeochemical cycle, especially in the ocean where dissolved iron limits nitrogen fixation and primary productivity. A thorough assessment of their impact has been hampered by a lack of methodology to measure the amount of, and variability in, their intracellular iron content. We quantified the iron mass contained in single MTB cells of Magnetospirillum magneticum strain AMB-1 using a time-resolved inductively coupled plasma-mass spectrometry methodology. Bacterial iron content depends on the external iron concentration, and reaches a maximum value of ~10-6 ng of iron per cell. From these results, we calculated the flux of dissolved iron incorporation into environmental MTB populations and conclude that MTB may mineralize a significant fraction of dissolved iron into crystals.


Subject(s)
Environmental Microbiology , Iron/analysis , Iron/metabolism , Magnetospirillum/metabolism , Magnetics , Magnetosomes/metabolism , Single-Cell Analysis
6.
Environ Sci Pollut Res Int ; 25(24): 23383-23403, 2018 Aug.
Article in English | MEDLINE | ID: mdl-27215986

ABSTRACT

Three sub-basins of the Seine River (France) under contrasted land uses (i.e., forested, agricultural, and urban) have been investigated in order to assess the origin and seasonal variation of trace metals, and evaluate their geochemical background and dynamics. Our results highlight a high anthropogenic impact on all elements for both the dissolved and particulate fractions. The main source for each element in the dissolved phase was determined and shows that transition and post-transition metals mainly originate from forested areas, while alkali and alkaline earth elements, metalloids, and halogens rather originate from agricultural land use. Conversely, for the particulate phase, most of the elements cannot be associated with a specific land use. Seasonal variation of elements was assessed according to the forested and agricultural land uses, and geochemical backgrounds were determined using average export rates, highlighting that the geochemical background for the forested land use is higher than the agricultural one for most of the elements. Finally, to confirm those results, Zn dynamics in the three characteristic sub-basins and between the different land uses was investigated using a combination of Zn speciation, Zn isotopic ratio, and Zn export rates.


Subject(s)
Environmental Monitoring/methods , Metals/analysis , Water Pollutants, Chemical/analysis , Agriculture , Environmental Monitoring/statistics & numerical data , Forests , France , Metalloids/analysis , Rivers , Seasons , Trace Elements/analysis , Urbanization , Water Pollution, Chemical/analysis , Water Pollution, Chemical/statistics & numerical data , X-Ray Absorption Spectroscopy , Zinc/analysis
7.
Science ; 352(6286): 705-8, 2016 May 06.
Article in English | MEDLINE | ID: mdl-27151868

ABSTRACT

Magnetotactic bacteria perform biomineralization of intracellular magnetite (Fe3O4) nanoparticles. Although they may be among the earliest microorganisms capable of biomineralization on Earth, identifying their activity in ancient sedimentary rocks remains challenging because of the lack of a reliable biosignature. We determined Fe isotope fractionations by the magnetotactic bacterium Magnetospirillum magneticum AMB-1. The AMB-1 strain produced magnetite strongly depleted in heavy Fe isotopes, by 1.5 to 2.5 per mil relative to the initial growth medium. Moreover, we observed mass-independent isotope fractionations in (57)Fe during magnetite biomineralization but not in even Fe isotopes ((54)Fe, (56)Fe, and (58)Fe), highlighting a magnetic isotope effect. This Fe isotope anomaly provides a potential biosignature for the identification of magnetite produced by magnetotactic bacteria in the geological record.


Subject(s)
Ferrosoferric Oxide/metabolism , Iron Isotopes/metabolism , Magnetite Nanoparticles , Magnetospirillum/growth & development , Magnetospirillum/metabolism , Biomarkers/metabolism , Culture Media , Geologic Sediments/microbiology , Magnetospirillum/isolation & purification , Minerals/metabolism
8.
Environ Sci Technol ; 50(4): 1844-52, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26761604

ABSTRACT

In this study, we quantify zinc isotope fractionation during its sorption onto kaolinite, by performing experiments under various pH, ionic strength, and total Zn concentrations. A systematic enrichment in heavy Zn isotopes on the surface of kaolinite was measured, with Δ(66)Znadsorbed-solution ranging from 0.11‰ at low pH and low ionic strength to 0.49‰ at high pH and high ionic strength. Both the measured Zn concentration and its isotopic ratio are correctly described using a thermodynamic sorption model that considers two binding sites: external basal surfaces and edge sites. Based on this modeling approach, two distinct Zn isotopic fractionation factors were calculated: Δ(66)Znadsorbed-solution = 0.18 ± 0.06‰ for ion exchange onto basal sites, and Δ(66)Znadsorbed-solution = 0.49 ± 0.06‰ for specific complexation onto edge sites. These two distinct factors indicate that Zn isotope fractionation is dominantly controlled by the chemical composition of the solution (pH, ionic strength).


Subject(s)
Kaolin/chemistry , Soil Pollutants/chemistry , Zinc/chemistry , Adsorption , Chemical Fractionation , Zinc Isotopes/chemistry
9.
Nanotoxicology ; 10(2): 216-25, 2016.
Article in English | MEDLINE | ID: mdl-26593393

ABSTRACT

The gram-negative bacteria Escherichia coli (E. coli) is a very useful prokaryotic model for testing the toxicity of ZnO nanoparticles (nano-ZnO). This toxicity is often linked to Zn(2+) released from nanoparticles in the culture medium, and nano-ZnO dissolution in different media is clearly established. Here, two model E. coli strains MG1655 and W3110 both descendant from the original K-12 showing slight differences in their genome were submitted to nano-ZnO or Zn(2+) in order 1 > to refine the nano-ZnO toxicity mechanisms to E. coli, and 2 > to investigate whether toxicity resulted from a real "nanoparticle" effect or from the release of Zn(2+) in solution. To do so, both strains were submitted to various concentrations (i.e., 0.1-1 mM) of nano-ZnO or Zn(2+) in Luria Bertani (LB) medium. These toxicity studies take into account the nano-ZnO solubility in the culture medium by specifically monitoring the Zn(2+) release in our experimental systems. In our experimental conditions, differences in tolerance to nano-ZnO or Zn(2+) between both strains were clearly evidenced. W3110 is generally more tolerant to metal than MG1655, the latter showing no real difference in its sensitivity to the two zinc added forms unlike W3110. The differences in behavior between both strains could be attributed to differences in the two genomes as a mutation named "amber" in W3110. Moreover, by using these two closely E. coli strains, a real "nano" effect is here clearly demonstrated providing a model to study the toxicity of ZnO nanoparticles.


Subject(s)
Escherichia coli/classification , Escherichia coli/drug effects , Nanoparticles/toxicity , Zinc Oxide/toxicity , Zinc/toxicity , Dose-Response Relationship, Drug , Drug Liberation , Escherichia coli/genetics , Genotype , Nanoparticles/chemistry , Solubility , Species Specificity , Zinc Oxide/chemistry
10.
J Nanosci Nanotechnol ; 15(5): 3900-8, 2015 May.
Article in English | MEDLINE | ID: mdl-26505021

ABSTRACT

This study aims to characterize nanoparticles with different compositions and structures as well as seeing their evolutions over time in a natural environment such as Seine river water (Paris, France). Face centered cubic (fcc) and hexagonal (hcp) CdS as well as hexagonal (hcp) ZnO nanoparticles were synthesized by the Polyol method. CdS nanoparticles (i) cfc structure: are agglomerated, present 100 nm length with heterogeneous diameter and 10 m2 g(-1) specific surface area (S(g)) from Brunauer Emett and Teller (BET) measurements; (ii) hcp structure: 20 nm and S(g) = 67 m2 g(-1). ZnO hcp nanoparticles presents 50 nm length and 15 nm diameter and S(g) = 54 m2 g(-1). These results are in agreement with X-ray diffraction (XRD), and small angle X-ray scattering (SAXs). After 48 h interaction with Seine river water, cryo-TEM analysis showed that ZnO nanoparticles form spherical agglomerates with 300 nm diameter; CdS nanoparticles (fcc) are agglomerated presenting large diameters (> 500 nm); and CdS nanoparticles (hcp) are not agglomerated and present the same characteristics of the starting material. After 168h of contact with Seine river water, CdS (fcc) presents only 14% of dissolution, CdS (hcp) presents both 60% dissolution and 30% reprecipitation in a cadmium carbonate form and finally almost 90% of ZnO nanoparticles are dissolved.


Subject(s)
Cadmium Compounds/chemistry , Metal Nanoparticles/chemistry , Polymers/chemistry , Rivers/chemistry , Sulfides/chemistry , Zinc Oxide/chemistry , Hydrogen-Ion Concentration , Paris , Scattering, Small Angle , X-Ray Diffraction
11.
Proc Natl Acad Sci U S A ; 112(6): 1699-703, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25624469

ABSTRACT

There are longstanding and ongoing controversies about the abiotic or biological origin of nanocrystals of magnetite. On Earth, magnetotactic bacteria perform biomineralization of intracellular magnetite nanoparticles under a controlled pathway. These bacteria are ubiquitous in modern natural environments. However, their identification in ancient geological material remains challenging. Together with physical and mineralogical properties, the chemical composition of magnetite was proposed as a promising tracer for bacterial magnetofossil identification, but this had never been explored quantitatively and systematically for many trace elements. Here, we determine the incorporation of 34 trace elements in magnetite in both cases of abiotic aqueous precipitation and of production by the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1. We show that, in biomagnetite, most elements are at least 100 times less concentrated than in abiotic magnetite and we provide a quantitative pattern of this depletion. Furthermore, we propose a previously unidentified method based on strontium and calcium incorporation to identify magnetite produced by magnetotactic bacteria in the geological record.


Subject(s)
Biomarkers/analysis , Magnetite Nanoparticles/analysis , Magnetospirillum/chemistry , Magnetospirillum/growth & development , Trace Elements/analysis , Analysis of Variance , Biomarkers/metabolism , Cell Culture Techniques , Fermentation , Ferrosoferric Oxide/chemical synthesis , Magnetospirillum/metabolism , Microscopy, Electron, Transmission , Trace Elements/metabolism
12.
Environ Toxicol Chem ; 33(2): 341-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24399805

ABSTRACT

The increasing production of nanoparticles has raised strong concerns regarding their environmental release. In life cycle scenarios of nanoparticles, marine systems constitute one of the main final compartments, and the fate of nanoparticles in marine environments needs to be assessed. The dissolution kinetics of commercial uncoated and organic-coated ZnO nanoparticles in synthetic seawater were investigated using the Donnan membrane technique and 1000-Da pore size ultrafiltration. Uncoated nanoparticles reach a maximum dissolution within the first hour, approximately 24% of total ZnO at pH 8.2, and 4% at pH 7.7, followed by secondary carbonated phase precipitation (hydrozincite) until the system reaches a steady state after 30 d of interaction. Assuming a pseudo first-order kinetics for hydrozincite precipitation allowed calculation of kinetics constant values k'(p) of -208 × 10(-4 ) mol L(-1) h(-1 ) ± 15 × 10(-4) mol L(-1) h(-1) (standard deviation) at pH 7.7, and -57 × 10(-4 ) mol L(-1) h(-1 ) ± 11 × 10(-4) mol L(-1) h(-1) at pH 8.2. The presence of an organic coating drastically modifies the life cycle of nanoparticles, with a maximum dissolution reached after 7 d of interaction, followed by a stationary phase lasting from 1 wk to 3 wk, and a subsequent Zn carbonate precipitation until a steady state is reached after 1.5 mo. Monitoring changes in the physicochemical parameters of nanoparticles after exposure to synthetic seawater constitutes an important step in predicting their fate in environmental systems, with major implications for ecotoxicological studies in which metallic speciation is required for toxicity evaluation.


Subject(s)
Metal Nanoparticles/chemistry , Seawater/chemistry , Water Pollutants, Chemical/chemistry , Zinc Oxide/chemistry , Fresh Water/chemistry , Hydrogen-Ion Concentration , Kinetics , Membranes, Artificial , Solubility , Ultrafiltration
13.
J Colloid Interface Sci ; 405: 35-43, 2013 Sep 01.
Article in English | MEDLINE | ID: mdl-23777864

ABSTRACT

We have studied the effect of TiO2 nanoparticles (NPs) on the model cyanobacteria Synechocystis PCC6803. We used well-characterized NPs suspensions in artificial and natural (Seine River, France) waters. We report that NPs trigger direct (cell killing) and indirect (cell sedimentation precluding the capture of light, which is crucial to photosynthesis) deleterious effects. Both toxic effects increase with NPs concentration and are exacerbated by the presence of UVAs that increase the production of Reactive Oxygen Species (hydroxyl and superoxide radicals) by TiO2 NPs. Furthermore, we compared the responses of the wild-type strain of Synechocystis, which possesses abundant exopolysaccharides surrounding the cells, to that of an EPS-depleted mutant. We show, for the first time, that the exopolysaccharides play a crucial role in Synechocystis protection against cell killing caused by TiO2 NPs.


Subject(s)
Nanoparticles/chemistry , Polysaccharides/chemistry , Synechocystis/metabolism , Titanium/chemistry , Hydroxyl Radical , Light , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanotechnology , Reactive Oxygen Species , Water/chemistry , Water Microbiology
14.
Colloids Surf B Biointerfaces ; 102: 158-64, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23006561

ABSTRACT

Seine River water was used as a natural environmental medium to quantify the ecotoxicological impact of three types of manufactured titanium dioxide (TiO(2)) nanoparticles toward the model bacterium Escherichia coli. Under ambient light, a significant toxicity starting at 10 ppm of TiO(2) in water was observed. Presence of the anatase polymorph slightly increased the toxicity in comparison to pure rutile samples. Furthermore, the toxicity was found to be lower at pH 5 compared to Seine water (pH 8). To assess the nanoparticles state of dispersion and their interactions with bacteria, cryogenic transmission electron microscopy (TEM) and zeta potential measurements were performed. A higher sorption of nanoparticle aggregates on cells is observed at pH 5 compared to Seine water. This allows concluding that the observed toxicity is not directly linked to the particles sorption onto the cell surfaces. In spite of stronger interaction between cells and nanoparticles at pH 5, a bacterial subpopulation apparently non-interacting with nanoparticles is evidenced by both TEM and zeta potential measurements. Such heterogeneities in cell populations can increase global bacterial resistance to TiO(2) nanoparticles.


Subject(s)
Escherichia coli/drug effects , Nanoparticles/chemistry , Titanium/pharmacology , Water/chemistry , Cryoelectron Microscopy , Escherichia coli/ultrastructure , Hydrogen-Ion Concentration , Microscopy, Electron, Transmission , Scattering, Radiation
15.
Environ Sci Technol ; 39(12): 4490-8, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-16047785

ABSTRACT

The long- and short-term interactions between zinc, an essential but also toxic element, and freshwater and marine diatoms are not well understood partly because of a lack of information on Zn speciation on the surface and inside the cells. In this work, interactions of aqueous Zn2+ with marine (Skeletonema costatum) and freshwater (Achnanthidium minutissimum, Navicula minima, and Melosira varians) diatoms were studied using conventional macroscopic techniques, while the local atomic structure of metal ions adsorbed on their surface or incorporated into the cells was characterized by in-situ Zn K-edge X-ray absorption fine structure (XAFS) spectroscopy on both intact and liophylized samples. At the cell surface for all diatom species studied, Zn was tetrahedrally coordinated with oxygen at approximately 2.00 +/- 0.02 A and monodentately bonded to one or two carboxylate groups; these results are consistent with the surface speciation model developed from macroscopic adsorption experiments. The atomic environment of Zn incorporated into freshwater diatoms during long-term growth in normal nutrient media was distinctly differentfrom that of adsorbed Zn: it was dominated by O (and/or N) neighbors in a tetrahedral arrangement at 1.97 +/- 0.02 A in the first atomic shell, with the presence of 1 phosphorus and 2 carbons in the Zn second shell. Contrasting speciation of intracellular zinc was revealed for the marine species Skeletonema costatum in which Zn was coordinated to 2 O/N atoms and 2 sulfur groups in the form of cysteine-histidine complexes and/or zinc thiolate clusters. These new structural data strongly suggest: (i) the predominant > R-COO- ligand binding of Zn atthe diatom surface; (ii) the nonspecific storage of Zn in the form of carboxylate/phosphate groups inside the cell of freshwater species; and (iii) the highly specific thiol-ligand coordination of intracellular zinc for marine S. costatum species.


Subject(s)
Diatoms/chemistry , Fresh Water/chemistry , Models, Chemical , Seawater/chemistry , Zinc/chemistry , Spectrum Analysis/methods , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...