Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(12): e115496, 2014.
Article in English | MEDLINE | ID: mdl-25536063

ABSTRACT

Pancreatic adenocarcinoma (PA) is among the most aggressive human tumors with an overall 5-year survival rate of <5% and available treatments are only minimal effective. WNT/ß-catenin signaling has been identified as one of 12 core signaling pathways that are commonly mutated in PA. To obtain more insight into the role of WNT/ß-catenin signaling in PA we established human PA cell lines that are deficient of the central canonical WNT signaling protein ß-catenin by using zinc-finger nuclease (ZFN) mediated targeted genomic disruption in the ß-catenin gene (CTNNB1). Five individual CTNNB1 gene disrupted clones (BxPC3ΔCTNNB1) were established from a BxPC-3 founder cell line. Despite the complete absence of ß-catenin, all clones displayed normal cell cycle distribution profiles, overall normal morphology and no elevated levels of apoptosis although increased doubling times were observed in three of the five BxPC3ΔCTNNB1 clones. This confirms that WNT/ß-catenin signaling is not mandatory for long term cell growth and survival in BxPC-3 cells. Despite a normal morphology of the ß-catenin deficient cell lines, quantitative proteomic analysis combined with pathway analysis showed a significant down regulation of proteins implied in cell adhesion combined with an up-regulation of plakoglobin. Treatment of BxPC3ΔCTNNB1 cell lines with siRNA for plakoglobin induced morphological changes compatible with a deficiency in the formation of functional cell to cell contacts. In addition, a re-localization of E-cadherin from membranous in untreated to accumulation in cytoplasmatic puncta in plakoglobin siRNA treated BxPC3ΔCTNNB1 cells was observed. In conclusion we describe in ß-catenin deficient BxPC-3 cells a rescue function for plakoglobin on cell to cell contacts and maintaining the localization of E-cadherin at the cellular surface, but not on canonical WNT signaling as measured by TFC/LEF mediated transcription.


Subject(s)
Adenocarcinoma/genetics , Gene Targeting , Genome, Human , Pancreatic Neoplasms/genetics , beta Catenin/metabolism , Adenocarcinoma/pathology , Adherens Junctions/metabolism , Apoptosis/genetics , Base Sequence , Cadherins/metabolism , Cell Adhesion , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation , Endocytosis , Endoribonucleases/metabolism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Ontology , Humans , Isotope Labeling , Molecular Sequence Data , Mutant Proteins/metabolism , Pancreatic Neoplasms/pathology , Protein Transport , TCF Transcription Factors/metabolism , Transcriptional Activation/genetics , alpha Catenin/metabolism , gamma Catenin/metabolism , Pancreatic Neoplasms
2.
BMC Mol Biol ; 11: 35, 2010 May 10.
Article in English | MEDLINE | ID: mdl-20459736

ABSTRACT

BACKGROUND: Formation of site specific genomic double strand breaks (DSBs), induced by the expression of a pair of engineered zinc-finger nucleases (ZFNs), dramatically increases the rates of homologous recombination (HR) between a specific genomic target and a donor plasmid. However, for the safe use of ZFN induced HR in practical applications, possible adverse effects of the technology such as cytotoxicity and genotoxicity need to be well understood. In this work, off-target activity of a pair of ZFNs has been examined by measuring the ratio between HR and illegitimate genomic integration in cells that are growing exponentially, and in cells that have been arrested in the G2/M phase. RESULTS: A reporter cell line that contained consensus ZFN binding sites in an enhanced green fluorescent protein (EGFP) reporter gene was used to measure ratios between HR and non-homologous integration of a plasmid template. Both in human cells (HEK 293) containing the consensus ZFN binding sites and in cells lacking the ZFN binding sites, a 3.5 fold increase in the level of illegitimate integration was observed upon ZFN expression. Since the reporter gene containing the consensus ZFN target sites was found to be intact in cells where illegitimate integration had occurred, increased rates of illegitimate integration most likely resulted from the formation of off-target genomic DSBs. Additionally, in a fraction of the ZFN treated cells the co-occurrence of both specific HR and illegitimate integration was observed. As a mean to minimize unspecific effects, cell cycle manipulation of the target cells by induction of a transient G2/M cell cycle arrest was shown to stimulate the activity of HR while having little effect on the levels of illegitimate integration, thus resulting in a nearly eight fold increase in the ratio between the two processes. CONCLUSIONS: The demonstration that ZFN expression, in addition to stimulating specific gene targeting by HR, leads to increased rates of illegitimate integration emphasizes the importance of careful characterization of ZFN treated cells. In order to reduce off-target events, reversible cell cycle arrest of the target cells in the G2/M phase is an efficient way for increasing the ratio between specific HR and illegitimate integration.


Subject(s)
Deoxyribonucleases/metabolism , Zinc Fingers , Cell Cycle , Cell Line , Deoxyribonucleases/chemistry , Green Fluorescent Proteins/metabolism , Humans , Protein Engineering
3.
DNA Repair (Amst) ; 8(3): 298-308, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19071233

ABSTRACT

Single-stranded oligonucleotides (ssODNs) and zinc-finger nucleases (ZFNs) are two approaches that are being pursued to achieve sequence specific genome modification. ZFNs induce high rates of homologous recombination (HR) between the target sequence and a given donor by introducing site-specific genomic double-strand breaks (DSBs). The mode of action that is used by ssODNs remains largely unknown, but may involve genomic integration of the ssODNs. In this work, cellular responses following ssODN and ZFN mediated correction of a genomic reporter gene have been investigated in human cells. Comparison of the cell cycle distribution of corrected cells following ssODN or ZFN exposure, established that ssODN corrected cells were arrested in the late S and G2/M cell cycle phases, while ZFN corrected cells displayed normal cell cycle profiles. We demonstrate that after ssODN mediated gene correction, phosphorylation of the damage sensor protein H2AX could be observed in 5.8% and 29% of the corrected cells, using a single copy and a multi copy reporter, respectively. When using the ZFN strategy in a single copy reporter only 1.5% of the corrected cells were positive for gamma-H2AX staining. By direct detection of genomic DSBs we establish that the observed cell cycle arrest following ssODN mediated gene correction could be associated with the presence of unrepaired genomic DSBs. Lastly, we establish that although a mutant cellular mismatch repair (MMR) system as expected enhanced ssODN mediated gene correction, the capacity of the ssODN corrected cells to proliferate was not influenced by the MMR system. In conclusion gene correction by means of the ssODN strategy leads to activation of DNA damage signalling and cell cycle arrest due to formation of unrepaired genomic DSBs in a high proportion of the corrected cells. On the contrary, cells corrected using ZFNs displayed normal cell cycle distribution and lower rates of DNA damage.


Subject(s)
Cell Proliferation/drug effects , DNA, Single-Stranded , Deoxyribonucleases/pharmacology , Oligodeoxyribonucleotides/pharmacology , Targeted Gene Repair/methods , Zinc Fingers , Apoptosis/genetics , Cell Line , DNA Breaks, Double-Stranded/drug effects , DNA Mismatch Repair/physiology , Deoxyribonucleases/chemistry , Genes, Reporter/genetics , Green Fluorescent Proteins , Histones/metabolism , Humans , Mutation , Oligodeoxyribonucleotides/genetics , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...