Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Virol ; 95(10): e29191, 2023 10.
Article in English | MEDLINE | ID: mdl-37861365

ABSTRACT

There has been an explosion in the number of papillomaviruses that have been identified and fully sequenced. Yet only a minute fraction of these has been studied in any detail. Most of our molecular research efforts have focused on the E6 and E7 proteins of "high-risk," cancer-associated human papillomaviruses (HPVs). Interactions of the high-risk HPV E6 and E7 proteins with their respective cellular targets, the p53 and the retinoblastoma tumor suppressors, have been investigated in minute detail. Some have thus questioned if research on papillomaviruses remains an exciting and worthwhile area of investigation. However, fundamentally new insights on the biological activities and cellular targets of the high-risk HPV E6 and E7 proteins have been discovered and previously unstudied HPVs have been newly associated with human diseases. HPV infections continue to be an important cause of human morbidity and mortality and since there are no antivirals to combat HPV infections, research on HPVs should remain attractive to new investigators and biomedical funding agencies, alike.


Subject(s)
Neoplasms , Oncogene Proteins, Viral , Papillomavirus Infections , Humans , Oncogene Proteins, Viral/genetics , Human Papillomavirus Viruses , Papillomavirus E7 Proteins , Papillomaviridae/genetics
2.
Cell Rep ; 38(8): 110417, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35196489

ABSTRACT

Androgen receptor (AR) signaling is the central driver of prostate cancer across disease states. While androgen deprivation therapy (ADT) is effective in the initial treatment of prostate cancer, resistance to ADT or to next-generation androgen pathway inhibitors invariably arises, most commonly through the re-activation of the AR axis. Thus, orthogonal approaches to inhibit AR signaling in advanced prostate cancer are essential. Here, via genome-scale CRISPR-Cas9 screening, we identify protein arginine methyltransferase 1 (PRMT1) as a critical mediator of AR expression and signaling. PRMT1 regulates the recruitment of AR to genomic target sites and the inhibition of PRMT1 impairs AR binding at lineage-specific enhancers, leading to decreased expression of key oncogenes, including AR itself. In addition, AR-driven prostate cancer cells are uniquely susceptible to combined AR and PRMT1 inhibition. Our findings implicate PRMT1 as a key regulator of AR output and provide a preclinical framework for co-targeting of AR and PRMT1 in advanced prostate cancer.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Androgen Antagonists/pharmacology , Androgen Antagonists/therapeutic use , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Male , Prostate/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms, Castration-Resistant/genetics , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Repressor Proteins/metabolism , Signal Transduction
3.
Cancer Discov ; 11(3): 591-598, 2021 03.
Article in English | MEDLINE | ID: mdl-33268447

ABSTRACT

Inherited lung cancer risk, particularly in nonsmokers, is poorly understood. Genomic and ancestry analysis of 1,153 lung cancers from Latin America revealed striking associations between Native American ancestry and their somatic landscape, including tumor mutational burden, and specific driver mutations in EGFR, KRAS, and STK11. A local Native American ancestry risk score was more strongly correlated with EGFR mutation frequency compared with global ancestry correlation, suggesting that germline genetics (rather than environmental exposure) underlie these disparities. SIGNIFICANCE: The frequency of somatic EGFR and KRAS mutations in lung cancer varies by ethnicity, but we do not understand why. Our study suggests that the variation in EGFR and KRAS mutation frequency is associated with genetic ancestry and suggests further studies to identify germline alleles that underpin this association.See related commentary by Gomez et al., p. 534.This article is highlighted in the In This Issue feature, p. 521.


Subject(s)
Biomarkers, Tumor/genetics , Genetic Predisposition to Disease , Germ-Line Mutation , Hispanic or Latino/genetics , Lung Neoplasms/epidemiology , Lung Neoplasms/genetics , Mutation , Alleles , Genetic Association Studies/methods , Genomics/methods , Humans , Latin America/epidemiology , Mutation Rate , Population Surveillance
4.
Mol Cancer Res ; 17(11): 2281-2293, 2019 11.
Article in English | MEDLINE | ID: mdl-31462500

ABSTRACT

High-grade serous ovarian cancer (HGSOC) is often sensitive to initial treatment with platinum and taxane combination chemotherapy, but most patients relapse with chemotherapy-resistant disease. To systematically identify genes modulating chemotherapy response, we performed pooled functional genomic screens in HGSOC cell lines treated with cisplatin, paclitaxel, or cisplatin plus paclitaxel. Genes in the intrinsic pathway of apoptosis were among the top candidate resistance genes in both gain-of-function and loss-of-function screens. In an open reading frame overexpression screen, followed by a mini-pool secondary screen, anti-apoptotic genes including BCL2L1 (BCL-XL) and BCL2L2 (BCL-W) were associated with chemotherapy resistance. In a CRISPR-Cas9 knockout screen, loss of BCL2L1 decreased cell survival whereas loss of proapoptotic genes promoted resistance. To dissect the role of individual anti-apoptotic proteins in HGSOC chemotherapy response, we evaluated overexpression or inhibition of BCL-2, BCL-XL, BCL-W, and MCL1 in HGSOC cell lines. Overexpression of anti-apoptotic proteins decreased apoptosis and modestly increased cell viability upon cisplatin or paclitaxel treatment. Conversely, specific inhibitors of BCL-XL, MCL1, or BCL-XL/BCL-2, but not BCL-2 alone, enhanced cell death when combined with cisplatin or paclitaxel. Anti-apoptotic protein inhibitors also sensitized HGSOC cells to the poly (ADP-ribose) polymerase inhibitor olaparib. These unbiased screens highlight anti-apoptotic proteins as mediators of chemotherapy resistance in HGSOC, and support inhibition of BCL-XL and MCL1, alone or combined with chemotherapy or targeted agents, in treatment of primary and recurrent HGSOC. IMPLICATIONS: Anti-apoptotic proteins modulate drug resistance in ovarian cancer, and inhibitors of BCL-XL or MCL1 promote cell death in combination with chemotherapy.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis Regulatory Proteins/genetics , Apoptosis/genetics , Drug Resistance, Neoplasm , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Ovarian Neoplasms/genetics , bcl-X Protein/antagonists & inhibitors , Cell Line, Tumor , Cisplatin/pharmacology , Female , Genomics , Humans , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Ovarian Neoplasms/drug therapy , Paclitaxel/pharmacology , bcl-X Protein/genetics , bcl-X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...