Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
2.
J Neurosurg ; 126(2): 446-459, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27177180

ABSTRACT

OBJECTIVE Improvement in treatment outcome for patients with glioblastoma multiforme (GBM) requires a multifaceted approach due to dysregulation of numerous signaling pathways. The murine double minute 2 (MDM2) protein may fulfill this requirement because it is involved in the regulation of growth, survival, and invasion. The objective of this study was to investigate the impact of modulating MDM2 function in combination with front-line temozolomide (TMZ) therapy in GBM. METHODS The combination of TMZ with the MDM2 protein-protein interaction inhibitor nutlin3a was evaluated for effects on cell growth, p53 pathway activation, expression of DNA repair proteins, and invasive properties. In vivo efficacy was assessed in xenograft models of human GBM. RESULTS In combination, TMZ/nutlin3a was additive to synergistic in decreasing growth of wild-type p53 GBM cells. Pharmacodynamic studies demonstrated that inhibition of cell growth following exposure to TMZ/nutlin3a correlated with: 1) activation of the p53 pathway, 2) downregulation of DNA repair proteins, 3) persistence of DNA damage, and 4) decreased invasion. Pharmacokinetic studies indicated that nutlin3a was detected in human intracranial tumor xenografts. To assess therapeutic potential, efficacy studies were conducted in a xenograft model of intracranial GBM by using GBM cells derived from a recurrent wild-type p53 GBM that is highly TMZ resistant (GBM10). Three 5-day cycles of TMZ/nutlin3a resulted in a significant increase in the survival of mice with GBM10 intracranial tumors compared with single-agent therapy. CONCLUSIONS Modulation of MDM2/p53-associated signaling pathways is a novel approach for decreasing TMZ resistance in GBM. To the authors' knowledge, this is the first study in a humanized intracranial patient-derived xenograft model to demonstrate the efficacy of combining front-line TMZ therapy and an inhibitor of MDM2 protein-protein interactions.


Subject(s)
Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/therapy , Glioblastoma/therapy , Imidazoles/therapeutic use , Piperazines/therapeutic use , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Temozolomide/therapeutic use , Animals , Brain Neoplasms/pathology , Combined Modality Therapy , Disease Models, Animal , Glioblastoma/pathology , Humans , Xenograft Model Antitumor Assays
3.
Drug Metab Dispos ; 43(9): 1360-71, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26149830

ABSTRACT

Effective treatments for primary brain tumors and brain metastases represent a major unmet medical need. Targeting the CDK4/CDK6-cyclin D1-Rb-p16/ink4a pathway using a potent CDK4 and CDK6 kinase inhibitor has potential for treating primary central nervous system tumors such as glioblastoma and some peripheral tumors with high incidence of brain metastases. We compared central nervous system exposures of two orally bioavailable CDK4 and CDK6 inhibitors: abemaciclib, which is currently in advanced clinical development, and palbociclib (IBRANCE; Pfizer), which was recently approved by the U.S. Food and Drug Administration. Abemaciclib antitumor activity was assessed in subcutaneous and orthotopic glioma models alone and in combination with standard of care temozolomide (TMZ). Both inhibitors were substrates for xenobiotic efflux transporters P-glycoprotein and breast cancer resistant protein expressed at the blood-brain barrier. Brain Kp,uu values were less than 0.2 after an equimolar intravenous dose indicative of active efflux but were approximately 10-fold greater for abemaciclib than palbociclib. Kp,uu increased 2.8- and 21-fold, respectively, when similarly dosed in P-gp-deficient mice. Abemaciclib had brain area under the curve (0-24 hours) Kp,uu values of 0.03 in mice and 0.11 in rats after a 30 mg/kg p.o. dose. Orally dosed abemaciclib significantly increased survival in a rat orthotopic U87MG xenograft model compared with vehicle-treated animals, and efficacy coincided with a dose-dependent increase in unbound plasma and brain exposures in excess of the CDK4 and CDK6 Ki values. Abemaciclib increased survival time of intracranial U87MG tumor-bearing rats similar to TMZ, and the combination of abemaciclib and TMZ was additive or greater than additive. These data show that abemaciclib crosses the blood-brain barrier and confirm that both CDK4 and CDK6 inhibitors reach unbound brain levels in rodents that are expected to produce enzyme inhibition; however, abemaciclib brain levels are reached more efficiently at presumably lower doses than palbociclib and are potentially on target for a longer period of time.


Subject(s)
Aminopyridines/pharmacology , Benzimidazoles/pharmacology , Brain Neoplasms/drug therapy , Brain/drug effects , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Glioblastoma/drug therapy , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , Aminopyridines/administration & dosage , Aminopyridines/therapeutic use , Animals , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Benzimidazoles/administration & dosage , Benzimidazoles/therapeutic use , Brain Neoplasms/pathology , Dacarbazine/administration & dosage , Dacarbazine/analogs & derivatives , Dogs , Female , Glioblastoma/pathology , Madin Darby Canine Kidney Cells , Male , Mice , Piperazines/administration & dosage , Piperazines/therapeutic use , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/therapeutic use , Pyridines/administration & dosage , Pyridines/therapeutic use , Rats , Temozolomide , Xenograft Model Antitumor Assays
4.
Bioorg Med Chem Lett ; 25(17): 3420-35, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26115571

ABSTRACT

Sustained proliferative capacity is a hallmark of cancer. In mammalian cells proliferation is controlled by the cell cycle, where cyclin-dependent kinases (CDKs) regulate critical checkpoints. CDK4 and CDK6 are considered highly validated anticancer drug targets due to their essential role regulating cell cycle progression at the G1 restriction point. This review provides an overview of recent advances on cyclin dependent kinase inhibitors in general with special emphasis on CDK4 and CDK6 inhibitors and compounds under clinical evaluation. Chemical structures, structure activity relationships, and relevant preclinical properties will be described.


Subject(s)
Antineoplastic Agents/therapeutic use , Cyclin-Dependent Kinase Inhibitor Proteins/metabolism , Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Cell Cycle , Humans
5.
Invest New Drugs ; 32(5): 825-37, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24919854

ABSTRACT

The G1 restriction point is critical for regulating the cell cycle and is controlled by the Rb pathway (CDK4/6-cyclin D1-Rb-p16/ink4a). This pathway is important because of its inactivation in a majority of human tumors. Transition through the restriction point requires phosphorylation of retinoblastoma protein (Rb) by CDK4/6, which are highly validated cancer drug targets. We present the identification and characterization of a potent CDK4/6 inhibitor, LY2835219. LY2835219 inhibits CDK4 and CDK6 with low nanomolar potency, inhibits Rb phosphorylation resulting in a G1 arrest and inhibition of proliferation, and its activity is specific for Rb-proficient cells. In vivo target inhibition studies show LY2835219 is a potent inhibitor of Rb phosphorylation, induces a complete cell cycle arrest and suppresses expression of several Rb-E2F-regulated proteins 24 hours after a single dose. Oral administration of LY2835219 inhibits tumor growth in human tumor xenografts representing different histologies in tumor-bearing mice. LY2835219 is effective and well tolerated when administered up to 56 days in immunodeficient mice without significant loss of body weight or tumor outgrowth. In calu-6 xenografts, LY2835219 in combination with gemcitabine enhanced in vivo antitumor activity without a G1 cell cycle arrest, but was associated with a reduction of ribonucleotide reductase expression. These results suggest LY2835219 may be used alone or in combination with standard-of-care cytotoxic therapy. In summary, we have identified a potent, orally active small-molecule inhibitor of CDK4/6 that is active in xenograft tumors. LY2835219 is currently in clinical development.


Subject(s)
Aminopyridines/pharmacology , Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Aminopyridines/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Benzimidazoles/therapeutic use , Cell Line, Tumor , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Drug Therapy, Combination , Female , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Mice , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Phosphorylation/drug effects , Protein Kinase Inhibitors/therapeutic use , Retinoblastoma Protein/antagonists & inhibitors , Retinoblastoma Protein/metabolism , Tumor Burden/drug effects , Xenograft Model Antitumor Assays , Gemcitabine
6.
Clin Cancer Res ; 20(14): 3763-74, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24850847

ABSTRACT

PURPOSE: Selective inhibition of cyclin-dependent kinases 4 and 6 (CDK4/6) represents a promising therapeutic strategy. However, despite documented evidence of clinical activity, limited information is available on the optimal dosing strategy of CDK4/6 inhibitors. Here, we present an integrated semi-mechanistic pharmacokinetic/pharmacodynamic model to characterize the quantitative pharmacology of LY2835219, a CDK4/6 inhibitor, in xenograft tumors. EXPERIMENTAL DESIGN: LY2835219 plasma concentrations were connected to CDK4/6 inhibition and cell-cycle arrest in colo-205 human colorectal xenografts by incorporating the biomarkers, phospho-(ser780)-Rb, topoisomerase II α, and phosphohistone H3, into a precursor-dependent transit compartment model. This biomarker model was then connected to tumor growth inhibition (TGI) by: (i) relating the rate of tumor growth to mitotic cell density, and (ii) incorporating a concentration-dependent mixed cytostatic/cytotoxic effect driving quiescence and cell death at high doses. Model validation was evaluated by predicting LY2835219-mediated antitumor effect in A375 human melanoma xenografts. RESULTS: The model successfully described LY2835219-mediated CDK4/6 inhibition, cell-cycle arrest, and TGI in colo-205, and was validated in A375. The model also demonstrated that a chronic dosing strategy achieving minimum steady-state trough plasma concentrations of 200 ng/mL is required to maintain durable cell-cycle arrest. Quiescence and cell death can be induced by further increasing LY2835219 plasma concentrations. CONCLUSIONS: Our model provides mechanistic insight into the quantitative pharmacology of LY2835219 and supports the therapeutic dose and chronic dosing strategy currently adopted in clinical studies.


Subject(s)
Aminopyridines/pharmacokinetics , Antineoplastic Agents/pharmacokinetics , Benzimidazoles/pharmacokinetics , Administration, Oral , Aminopyridines/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Benzimidazoles/therapeutic use , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Humans , Inhibitory Concentration 50 , Mice, Nude , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
7.
Int J Proteomics ; 2011: 578903, 2011.
Article in English | MEDLINE | ID: mdl-22084690

ABSTRACT

Cerebrospinal fluid (CSF) has been used for biomarker discovery of neurodegenerative diseases in humans since biological changes in the brain can be seen in this biofluid. Inactivation of A-T-mutated protein (ATM), a multifunctional protein kinase, is responsible for A-T, yet biochemical studies have not succeeded in conclusively identifying the molecular mechanism(s) underlying the neurodegeneration seen in A-T patients or the proteins that can be used as biomarkers for neurologic assessment of A-T or as potential therapeutic targets. In this study, we applied a high-throughput LC/MS-based label-free protein quantification technology to quantitatively characterize the proteins in CSF samples in order to identify differentially expressed proteins that can serve as potential biomarker candidates for A-T. Among 204 identified CSF proteins with high peptide-identification confidence, thirteen showed significant protein expression changes. Bioinformatic analysis revealed that these 13 proteins are either involved in neurodegenerative disorders or cancer. Future molecular and functional characterization of these proteins would provide more insights into the potential therapeutic targets for the treatment of A-T and the biomarkers that can be used to monitor or predict A-T disease progression. Clinical validation studies are required before any of these proteins can be developed into clinically useful biomarkers.

8.
Genomics Proteomics Bioinformatics ; 5(1): 15-24, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17572360

ABSTRACT

To determine cancer pathway activities in nine types of primary tumors and NCI60 cell lines, we applied an in silica approach by examining gene signatures reflective of consequent pathway activation using gene expression data. Supervised learning approaches predicted that the Ras pathway is active in approximately 70% of lung adenocarcinomas but inactive in most squamous cell carcinomas, pulmonary carcinoids, and small cell lung carcinomas. In contrast, the TGF-beta, TNF-alpha, Src, Myc, E2F3, and beta-catenin pathways are inactive in lung adenocarcinomas. We predicted an active Ras, Myc, Src, and/or E2F3 pathway in significant percentages of breast cancer, colorectal carcinoma, and gliomas. Our results also suggest that Ras may be the most prevailing oncogenic pathway. Additionally, many NCI60 cell lines exhibited a gene signature indicative of an active Ras, Myc, and/or Src, but not E2F3, beta-catenin, TNF-alpha, or TGF-beta pathway. To our knowledge, this is the first comprehensive survey of cancer pathway activities in nine major tumor types and the most widely used NCI60 cell lines. The "gene expression pathway signatures" we have defined could facilitate the understanding of molecular mechanisms in cancer development and provide guidance to the selection of appropriate cell lines for cancer research and pharmaceutical compound screening.


Subject(s)
Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Neoplasms/metabolism , Cell Line, Tumor , Computational Biology , Humans , Models, Genetic , Neoplasms/classification
9.
J Proteome Res ; 6(5): 1758-67, 2007 May.
Article in English | MEDLINE | ID: mdl-17397207

ABSTRACT

We present a wrapper-based approach to estimate and control the false discovery rate for peptide identifications using the outputs from multiple commercially available MS/MS search engines. Features of the approach include the flexibility to combine output from multiple search engines with sequence and spectral derived features in a flexible classification model to produce a score associated with correct peptide identifications. This classification model score from a reversed database search is taken as the null distribution for estimating p-values and false discovery rates using a simple and established statistical procedure. Results from 10 analyses of rat sera on an LTQ-FT mass spectrometer indicate that the method is well calibrated for controlling the proportion of false positives in a set of reported peptide identifications while correctly identifying more peptides than rule-based methods using one search engine alone.


Subject(s)
Mass Spectrometry/methods , Peptides , Proteomics , Adult , Amino Acid Sequence , Animals , Calibration , False Positive Reactions , Humans , Male , Mass Spectrometry/instrumentation , Middle Aged , Peptides/chemistry , Peptides/classification , Peptides/genetics , Peptides/metabolism , Polymorphism, Genetic , ROC Curve , Rats
10.
J Pharmacol Toxicol Methods ; 53(2): 152-9, 2006.
Article in English | MEDLINE | ID: mdl-15878830

ABSTRACT

INTRODUCTION: Affymetrix oligonucleotide microarrays are widely used in basic and applied research (Lander, E.S., (1999). Array of hope. Nature Genetics 21, 3-4; Lockhart, D.J. & Winzeler, E.A. (2000) Genomics, gene expression and DNA arrays. Nature 405, 827-836.) The need for a significant amount of starting RNA has limited its use in applications where the amount of RNA is limiting, such as with Laser Captured Microdissection (LCM), small biopsies, or peripheral blood in rodent models. To overcome this limitation, various RNA amplification and labeling methods have been described, however, further optimization and validation of these methods are needed. METHODS: Here we reported using the Arcturus technology to optimize amplification and labeling of small amounts of RNA for Affymetrix microarray studies. We assessed the technical feasibility and variation introduced by differences in starting RNA quantity and differences in technical performance by microarray hybridization. RESULTS: We demonstrated that the current approach is reliable to amplify as little as 40 ng total RNA, and it is suitable for Affymetrix studies yielding satisfactory quantitative chip performance. We also showed that differences in labeling methods contribute more to variation than the differences in starting RNA quantity per se. As a model, we studied the well-documented TNF-induced inflammatory responses in cultured human vascular endothelial cells. We were able to recapitulate the TNF-induced responses using small RNA sample profiling.


Subject(s)
Endothelium, Vascular/drug effects , Gene Expression Profiling/methods , Gene Expression Regulation/drug effects , Oligonucleotide Array Sequence Analysis/methods , RNA, Messenger/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Algorithms , Cells, Cultured , Endothelium, Vascular/metabolism , Endothelium, Vascular/pathology , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Proteins/genetics , Proteins/metabolism , RNA, Messenger/chemistry , Umbilical Veins
11.
J Invest Dermatol ; 124(4): 778-85, 2005 Apr.
Article in English | MEDLINE | ID: mdl-15816836

ABSTRACT

1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] regulates mineral homeostasis and exhibits potent anti-proliferative, prodifferentiative, and immunomodulatory activities. It mediates these effects by binding to the vitamin D receptor (VDR), which belongs to the superfamily of steroid/thyroid hormone nuclear receptors. As a result of keratinocyte differentiation and anti-proliferation activities, 1,25(OH)(2)D(3) and its synthetic analogs are therapeutically effective in psoriasis and show promise for the treatment of actinic keratosis and squamous cell carcinoma. To elucidate the VDR signaling pathway in keratinocytes, we examined the gene expression profile with 1,25(OH)(2)D(3) treatment using oligonucleotide microarrays. Out of the 12,600 genes investigated, 82 were upregulated and 16 were downregulated and many of these were involved in differentiation, proliferation, and immune response. We have identified three vitamin D-responsive chromosomal loci (1p36, 19q13, and 6p25) and show the induction of various class II tumor suppressor/growth-regulatory genes in response to 1,25(OH)(2)D(3). Finally, quantitative differences in gene expression revealed a vitamin D-regulated differentiation network and identified peptidylarginine deiminases, kallikreins, serine proteinase inhibitor family members, Kruppel-like factor 4, and c-fos as vitamin D-responsive genes, whose protein products may play an important role in epidermal differentiation in normal and diseased state.


Subject(s)
Calcitriol/pharmacology , Calcium Channel Agonists/pharmacology , Epidermal Cells , Keratinocytes/physiology , Transcription, Genetic/drug effects , Cell Differentiation/physiology , Cell Division/physiology , Cell Line, Transformed , Gene Expression/drug effects , Gene Expression/physiology , Gene Expression Profiling , Genes, Tumor Suppressor/physiology , Humans , Immunologic Factors/genetics , Keratinocytes/cytology , Keratinocytes/drug effects , Kruppel-Like Factor 4 , Oligonucleotide Array Sequence Analysis , Receptors, Calcitriol/genetics , Serpins/genetics , Signal Transduction/drug effects , Signal Transduction/physiology , Transcription, Genetic/physiology
12.
J Cell Biochem ; 95(2): 403-18, 2005 May 15.
Article in English | MEDLINE | ID: mdl-15779007

ABSTRACT

Teriparatide, human PTH (1-34), a new therapy for osteoporosis, elicits markedly different skeletal responses depending on the treatment regimen. In order to understand potential mechanisms for this dichotomy, the present investigation utilized microarrays to delineate the genes and pathways that are regulated by intermittent (subcutaneous injection of 80 microg/kg/day) and continuous (subcutaneous infusion of 40 microg/kg/day by osmotic mini pump) PTH (1-34) for 1 week in 6-month-old female rats. The effect of each PTH regimen was confirmed by histomorphometric analysis of the proximal tibial metaphysis, and mRNA from the distal femoral metaphysis was analyzed using an Affymetrix microarray. Both PTH paradigms co-regulated 22 genes including known bone formation genes (i.e., collagens, osteocalcin, decorin, and osteonectin) and also uniquely modulated additional genes. Intermittent PTH regulated 19 additional genes while continuous treatment regulated 173 additional genes. This investigation details for the first time the broad profiling of the gene and pathway changes that occur in vivo following treatment of intermittent versus continuous PTH (1-34). These results extend previous observations of gene expression changes and reveal the in vivo regulation of BMP3 and multiple neuronal genes by PTH treatment.


Subject(s)
Bone and Bones/drug effects , Oligonucleotide Array Sequence Analysis , Parathyroid Hormone/pharmacology , Peptide Fragments/pharmacology , Animals , Female , Gene Expression Profiling , Neurons/metabolism , Rats
13.
Cancer Res ; 64(11): 3761-6, 2004 Jun 01.
Article in English | MEDLINE | ID: mdl-15172981

ABSTRACT

The mechanisms of resistance to the antimetabolite gemcitabine in non-small cell lung cancer have not been extensively evaluated. In this study, we report the generation of two gemcitabine-selected non-small cell lung cancer cell lines, H358-G200 and H460-G400. Expression profiling results indicated that there was evidence for changes in the expression of 134 genes in H358-G200 cells compared with its parental line, whereas H460-G400 cells exhibited 233 genes that appeared to be under- or overexpressed compared with H460 cells. However, only the increased expression of ribonucleotide reductase subunit 1 (RRM1), which appeared in both resistant cell lines, met predefined analysis criteria for genes to investigate further. Quantitative PCR analysis demonstrated H358-G200 cells had a greater than 125-fold increase in RRM1 RNA expression. Western blot analysis confirmed high levels of RRM1 protein in this line compared with the gemcitabine-sensitive parent. No significant change in the expression of RRM2 was observed in either cell line, although both gemcitabine-resistant cell lines had an approximate 3-fold increase in p53R2 protein. A partial revertant of H358-G200 cells had reduced levels of RRM1 protein (compared with G200 cells), without observed changes in RRM2 or p53R2. In vitro analyses of ribonucleotide reductase activity demonstrated that despite high levels of RRM1 protein, ribonucleotide reductase activity was not increased in H358-G200 cells when compared with parental cells. The cDNA encoding RRM1 from H358-G200 cells was cloned and sequenced but did not reveal the presence of any mutations. The results from this study indicate that the level of RRM1 may affect gemcitabine response. Furthermore, RRM1 may serve as a biomarker for gemcitabine response.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/enzymology , Deoxycytidine/analogs & derivatives , Deoxycytidine/pharmacology , Lung Neoplasms/drug therapy , Lung Neoplasms/enzymology , Tumor Suppressor Proteins/biosynthesis , Carbon-Nitrogen Ligases/biosynthesis , Carbon-Nitrogen Ligases/genetics , Carcinoma, Non-Small-Cell Lung/genetics , Cell Line, Tumor , Cytosine Deaminase/biosynthesis , Cytosine Deaminase/genetics , DCMP Deaminase/biosynthesis , DCMP Deaminase/genetics , Deoxycytidine Kinase/biosynthesis , Deoxycytidine Kinase/genetics , Drug Resistance, Neoplasm , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Oligonucleotide Array Sequence Analysis , Ribonucleoside Diphosphate Reductase , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Gemcitabine
14.
Neurobiol Dis ; 16(1): 220-35, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15207279

ABSTRACT

Acute phencyclidine induces schizophrenia-like symptoms in healthy humans and psychotic episodes in schizophrenics. Although phencyclidine is known as a N-methyl d-aspartate receptor antagonist (NMDA-R), the molecular events underlying the behavioral symptoms remain largely unknown. Statistical analysis of oligonucleotide microarray data was used to identify phencyclidine-induced alterations in rat cortical gene expression. Acute phencyclidine produced a statistically significant change in 477 genes in rat prefrontal cortex (PFC), a brain area associated with cognitive dysfunction in schizophrenics. Real-time quantitative PCR (RTQ-PCR) confirmed a subset of these changes ranging from -59% to 255% (smallest confirmation: -19%). Subsequent time-course and dose-response studies using RTQ-PCR confirmed and extended the original microarray results. At the molecular level, genes altered by phencyclidine are related to diverse biological processes including stress, inflammatory response, growth and development, neural plasticity and signal transduction. Further analysis, aimed at assessing the relevance of our results to schizophrenia, revealed dysregulation of genes related to: (i) thalamocortical projections, (ii) neurotransmission and neuromodulation, (iii) thyroid hormone activity, (iv) oligodendrocyte linage, (v) brain lipid metabolism, (vi) sleep architecture and (viii) the velocardiofacial syndrome.


Subject(s)
Cerebral Cortex/drug effects , Gene Expression Regulation/drug effects , Oligonucleotide Array Sequence Analysis , Phencyclidine/administration & dosage , Schizophrenia/genetics , Animals , Cerebral Cortex/metabolism , Dose-Response Relationship, Drug , Male , Oligonucleotide Array Sequence Analysis/methods , Phencyclidine/pharmacology , Rats , Rats, Sprague-Dawley , Schizophrenia/metabolism
15.
Am J Pharmacogenomics ; 4(2): 129-39, 2004.
Article in English | MEDLINE | ID: mdl-15059035

ABSTRACT

INTRODUCTION: The hybridization intensities derived from microarray experiments, for example Affymetrix's MAS5 signals, are very often transformed in one way or another before statistical models are fitted. The motivation for performing transformation is usually to satisfy the model assumptions such as normality and homogeneity in variance. Generally speaking, two types of strategies are often applied to microarray data depending on the analysis need: correlation analysis where all the gene intensities on the array are considered simultaneously, and gene-by-gene ANOVA where each gene is analyzed individually. AIM: We investigate the distributional properties of the Affymetrix GeneChip signal data under the two scenarios, focusing on the impact of analyzing the data at an inappropriate scale. METHODS: The Box-Cox type of transformation is first investigated for the strategy of pooling genes. The commonly used log-transformation is particularly applied for comparison purposes. For the scenario where analysis is on a gene-by-gene basis, the model assumptions such as normality are explored. The impact of using a wrong scale is illustrated by log-transformation and quartic-root transformation. RESULTS: When all the genes on the array are considered together, the dependent relationship between the expression and its variation level can be satisfactorily removed by Box-Cox transformation. When genes are analyzed individually, the distributional properties of the intensities are shown to be gene dependent. Derivation and simulation show that some loss of power is incurred when a wrong scale is used, but due to the robustness of the t-test, the loss is acceptable when the fold-change is not very large.


Subject(s)
Data Interpretation, Statistical , Oligonucleotide Array Sequence Analysis/statistics & numerical data , Algorithms , Animals , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Databases, Genetic , Fluorescent Dyes , Gene Expression , Protein Folding , RNA/biosynthesis , RNA/genetics , Rats , Reference Values
16.
Am J Pharmacogenomics ; 3(4): 279-90, 2003.
Article in English | MEDLINE | ID: mdl-12930160

ABSTRACT

INTRODUCTION: Oligonucleotide and cDNA microarray experiments are now common practice in biological science research. The goal of these experiments is generally to gain clues about the functions of genes by measuring how their expression levels rise and fall in response to changing experimental conditions. Measures of gene expression are affected, however, by a variety of factors. This paper introduces statistical methods to assess the variability of Affymetrix GeneChip data due to randomness. METHODS: The variation of Affymetrix's GeneChip signal data are quantified at both chip level and individual gene level, respectively, by the agreement study method and variance components method. Three agreement measurement methods are introduced to assess the variability among chips. Variation sources for gene expression data are decomposed into four categories: systematic experiment variation, treatment effect, biological variation, and chip variation. The focus of this paper is on evaluating and comparing the last two kinds of variations. RESULTS: Measurement of agreement and variance components methods were applied to an experimental data, and the calculation and interpretation were exemplified. The variability between biological samples were shown to exist and were assessed at both the chip level and individual gene level. Using the variance components method, it was found that the biological and chip variation are roughly comparable. The Statistical Analysis System (SAS) program for doing the agreement studies can be obtained from the correspondence author.


Subject(s)
Oligonucleotide Array Sequence Analysis/statistics & numerical data , Algorithms , Data Interpretation, Statistical , Probability Theory , Quality Control , Reproducibility of Results
17.
J Card Fail ; 8(3): 167-74, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12140810

ABSTRACT

BACKGROUND: Members of the nuclear receptor family proteins function as transcription factors upon ligand binding and thereby regulate gene expression in host cells. Aldosterone, the high-affinity endogenous ligand for the mineralocorticoid receptor, induces cardiac hypertrophy and fibrosis in a variety of animal models, but the transcriptional targets for aldosterone in the myocardium are not well-described. METHODS AND RESULTS: Using quantitative reverse transcription-polymerase chain reaction method, we show that in cultured rat neonatal cardiomyocytes, aldosterone stimulates expression of angiotensin converting enzyme (ACE) in a concentration and time-dependent manner. Aldosterone (50 and 100 nM) increased levels of ACE mRNA by 1.8- and 2.2-fold, respectively. Aldosterone-induced ACE gene expression was blocked by spironolactone (1 microM), a mineralocorticoid receptor antagonist. In contrast, the expressions of the type I angiotensin receptor was not induced by aldosterone in either cardiac myocytes or fibroblasts. Consistent with the increased ACE mRNA level, 100 nM aldosterone also induced a 2-fold increase in ACE activity in cardiac myocytes. CONCLUSION: ACE gene expression may be a target for mineralocorticoid receptors in the myocardium, supporting the notion that at least some of the known adverse effects of aldosterone on the myocardium are mediated by increased angiotensin II.


Subject(s)
Aldosterone/pharmacology , Gene Expression/drug effects , Myocardium/enzymology , Peptidyl-Dipeptidase A/metabolism , RNA, Messenger/metabolism , Animals , Cells, Cultured , Models, Animal , Myocardium/cytology , Peptidyl-Dipeptidase A/genetics , Rats , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...