Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Viruses ; 13(8)2021 07 21.
Article in English | MEDLINE | ID: mdl-34452286

ABSTRACT

Virotherapy research involves the development, exploration, and application of oncolytic viruses that combine direct killing of cancer cells by viral infection, replication, and spread (oncolysis) with indirect killing by induction of anti-tumor immune responses. Oncolytic viruses can also be engineered to genetically deliver therapeutic proteins for direct or indirect cancer cell killing. In this review-as part of the special edition on "State-of-the-Art Viral Vector Gene Therapy in Germany"-the German community of virotherapists provides an overview of their recent research activities that cover endeavors from screening and engineering viruses as oncolytic cancer therapeutics to their clinical translation in investigator-initiated and sponsored multi-center trials. Preclinical research explores multiple viral platforms, including new isolates, serotypes, or fitness mutants, and pursues unique approaches to engineer them towards increased safety, shielded or targeted delivery, selective or enhanced replication, improved immune activation, delivery of therapeutic proteins or RNA, and redirecting antiviral immunity for cancer cell killing. Moreover, several oncolytic virus-based combination therapies are under investigation. Clinical trials in Germany explore the safety and potency of virotherapeutics based on parvo-, vaccinia, herpes, measles, reo-, adeno-, vesicular stomatitis, and coxsackie viruses, including viruses encoding therapeutic proteins or combinations with immune checkpoint inhibitors. These research advances represent exciting vantage points for future endeavors of the German virotherapy community collectively aimed at the implementation of effective virotherapeutics in clinical oncology.


Subject(s)
Neoplasms/therapy , Oncolytic Virotherapy , Oncolytic Viruses , Animals , Clinical Trials as Topic , Genetic Engineering , Germany , Humans , Oncolytic Viruses/genetics
2.
Ther Hypothermia Temp Manag ; 9(3): 216-221, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30912704

ABSTRACT

Targeted temperature management (TTM) might improve outcome of patients with severe subarachnoid hemorrhage (SAH) in which vasospasm, delayed cerebral ischemia (DCI), and increased intracranial pressure (ICP) are frequent and severe complications. A series of patients (n = 3) with severe aneurysmatic SAH were treated by TTM if they developed ICP crisis and/or severe vasospasm diagnosed by angiography. Once these complications were detected, body core temperature (BCT) was rapidly decreased to 35°C or 33°C, if necessary. BCT induced and maintained by surface cooling remained at the desired level for at least 72 hours. Rewarming was performed by 1°C, only if the target parameters ICP and velocities in the serial Doppler sonography indicating macrovascular vasospasm improved to regular levels. In case of increase of ICP or middle cerebral arteries velocities BCT was decreased again to the last effective level. The patients developed vasospasm between days 6 and 12 after SAH. All aneurysms were treated by coiling. BCT was reduced between days 6 and 12 after SAH. Total duration of BCT <36.5°C was between 5.5 and 8 days. It remained <35°C for 4-6 days, and at 33°C for 3 days on average. ICP could be sufficiently controlled in all patients, because no ICP crisis was observed during TTM and after rewarming. Two patients developed minor DCI. Side effects of prolonged ventilation of 7-18 days included pneumonia for two patients that could be treated sufficiently. Other complications were one case of ventriculitis and two temporary deliriums. Outcome of the patients was good because no focal neurological symptoms could be detected after rehabilitation. TTM represents a promising treatment approach for severe SAH in which standard treatment is often limited and experimental. It deserves further clinical investigation in a larger cohort.


Subject(s)
Hypothermia, Induced , Subarachnoid Hemorrhage , Vasospasm, Intracranial , Brain/blood supply , Brain/diagnostic imaging , Female , Humans , Male , Middle Aged , Subarachnoid Hemorrhage/complications , Subarachnoid Hemorrhage/diagnostic imaging , Subarachnoid Hemorrhage/therapy , Treatment Outcome , Vasospasm, Intracranial/diagnostic imaging , Vasospasm, Intracranial/etiology , Vasospasm, Intracranial/therapy
3.
Viruses ; 9(12)2017 12 15.
Article in English | MEDLINE | ID: mdl-29244745

ABSTRACT

Glioblastoma, one of the most aggressive primary brain tumors, is characterized by highly immunosuppressive microenvironment. This contributes to glioblastoma resistance to standard treatment modalities and allows tumor growth and recurrence. Several immune-targeted approaches have been recently developed and are currently under preclinical and clinical investigation. Oncolytic viruses, including the autonomous protoparvovirus H-1 (H-1PV), show great promise as novel immunotherapeutic tools. In a first phase I/IIa clinical trial (ParvOryx01), H-1PV was safe and well tolerated when locally or systemically administered to recurrent glioblastoma patients. The virus was able to cross the blood-brain (tumor) barrier after intravenous infusion. Importantly, H-1PV treatment of glioblastoma patients was associated with immunogenic changes in the tumor microenvironment. Tumor infiltration with activated cytotoxic T cells, induction of cathepsin B and inducible nitric oxide (NO) synthase (iNOS) expression in tumor-associated microglia/macrophages (TAM), and accumulation of activated TAM in cluster of differentiation (CD) 40 ligand (CD40L)-positive glioblastoma regions was detected. These are the first-in-human observations of H-1PV capacity to switch the immunosuppressed tumor microenvironment towards immunogenicity. Based on this pilot study, we present a tentative model of H-1PV-mediated modulation of glioblastoma microenvironment and propose a combinatorial therapeutic approach taking advantage of H-1PV-induced microglia/macrophage activation for further (pre)clinical testing.


Subject(s)
Glioblastoma/therapy , H-1 parvovirus/growth & development , Immunologic Factors , Microglia/immunology , Oncolytic Virotherapy/methods , Oncolytic Viruses/growth & development , T-Lymphocytes, Cytotoxic/immunology , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic , Humans , Treatment Outcome
4.
Mol Ther ; 25(12): 2620-2634, 2017 Dec 06.
Article in English | MEDLINE | ID: mdl-28967558

ABSTRACT

Oncolytic virotherapy may be a means of improving the dismal prognosis of malignant brain tumors. The rat H-1 parvovirus (H-1PV) suppresses tumors in preclinical glioma models, through both direct oncolysis and stimulation of anticancer immune responses. This was the basis of ParvOryx01, the first phase I/IIa clinical trial of an oncolytic parvovirus in recurrent glioblastoma patients. H-1PV (escalating dose) was administered via intratumoral or intravenous injection. Tumors were resected 9 days after treatment, and virus was re-administered around the resection cavity. Primary endpoints were safety and tolerability, virus distribution, and maximum tolerated dose (MTD). Progression-free and overall survival and levels of viral and immunological markers in the tumor and peripheral blood were also investigated. H-1PV treatment was safe and well tolerated, and no MTD was reached. The virus could cross the blood-brain/tumor barrier and spread widely through the tumor. It showed favorable pharmacokinetics, induced antibody formation in a dose-dependent manner, and triggered specific T cell responses. Markers of virus replication, microglia/macrophage activation, and cytotoxic T cell infiltration were detected in infected tumors, suggesting that H-1PV may trigger an immunogenic stimulus. Median survival was extended in comparison with recent meta-analyses. Altogether, ParvOryx01 results provide an impetus for further H-1PV clinical development.


Subject(s)
Genetic Therapy , Genetic Vectors/genetics , Glioblastoma/genetics , Glioblastoma/therapy , H-1 parvovirus/genetics , Oncolytic Virotherapy , Oncolytic Viruses/genetics , Aged , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Female , Gene Expression , Genetic Therapy/adverse effects , Genetic Therapy/methods , Genetic Vectors/administration & dosage , Genetic Vectors/immunology , Glioblastoma/mortality , Glioblastoma/pathology , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Male , Middle Aged , Molecular Targeted Therapy , Oncolytic Virotherapy/adverse effects , Oncolytic Virotherapy/methods , Radiotherapy , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Transgenes , Treatment Outcome
5.
Hum Gene Ther ; 28(10): 800-819, 2017 10.
Article in English | MEDLINE | ID: mdl-28870120

ABSTRACT

Virotherapy is a unique modality for the treatment of cancer with oncolytic viruses (OVs) that selectively infect and lyse tumor cells, spread within tumors, and activate anti-tumor immunity. Various viruses are being developed as OVs preclinically and clinically, several of them engineered to encode therapeutic proteins for tumor-targeted gene therapy. Scientists and clinicians in German academia have made significant contributions to OV research and development, which are highlighted in this review paper. Innovative strategies for "shielding," entry or postentry targeting, and "arming" of OVs have been established, focusing on adenovirus, measles virus, parvovirus, and vaccinia virus platforms. Thereby, new-generation virotherapeutics have been derived. Moreover, immunotherapeutic properties of OVs and combination therapies with pharmacotherapy, radiotherapy, and especially immunotherapy have been investigated and optimized. German investigators are increasingly assessing their OV innovations in investigator-initiated and sponsored clinical trials. As a prototype, parvovirus has been tested as an OV from preclinical proof-of-concept up to first-in-human clinical studies. The approval of the first OV in the Western world, T-VEC (Imlygic), has further spurred the involvement of investigators in Germany in international multicenter studies. With the encouraging developments in funding, commercialization, and regulatory procedures, more German engineering will be translated into OV clinical trials in the near future.


Subject(s)
Genetic Vectors , Oncolytic Virotherapy , Oncolytic Viruses , Research , Animals , Clinical Trials as Topic , Combined Modality Therapy , Drug Evaluation, Preclinical , Genetic Therapy/methods , Genetic Vectors/genetics , Germany , Humans , Models, Animal , Oncolytic Virotherapy/methods , Oncolytic Viruses/genetics , Treatment Outcome
6.
BMC Cancer ; 17(1): 576, 2017 Aug 29.
Article in English | MEDLINE | ID: mdl-28851316

ABSTRACT

BACKGROUND: Metastatic pancreatic cancer has a dismal prognosis, with a mean six-month progression-free survival of approximately 50% and a median survival of about 11 months. Despite intensive research, only slight improvements of clinical outcome could be achieved over the last decades. Hence, new and innovative therapeutic strategies are urgently required. ParvOryx is a drug product containing native parvovirus H-1 (H-1PV). Since H-1PV was shown to exert pronounced anti-neoplastic effects in pre-clinical models of pancreatic cancer, the drug appears to be a promising candidate for treatment of this malignancy. METHODS: ParvOryx02 is a non-controlled, single arm, open label, dose-escalating, single center trial. In total seven patients with pancreatic cancer showing at least one hepatic metastasis are to be treated with escalating doses of ParvOryx according to the following schedule: i) 40% of the total dose infused intravenously in equal fractions on four consecutive days, ii) 60% of the total dose injected on a single occasion directly into the hepatic metastasis at varying intervals after intravenous infusions. The main eligibility criteria are: age ≥ 18 years, disease progression despite first-line chemotherapy, and at least one hepatic metastasis. Since it is the second trial within the drug development program, the study primarily explores safety and tolerability after further dose escalation of ParvOryx. The secondary objectives are related to the evaluation of certain aspects of anti-tumor activity and clinical efficacy of the drug. DISCUSSION: This trial strongly contributes to the clinical development program of ParvOryx. The individual hazards for patients included in the current study and the environmental risks are addressed and counteracted adequately. Besides information on safety and tolerability of the treatment after further dose escalation, thorough evaluations of pharmacokinetics and intratumoral spread as well as proof-of-concept (PoC) in pancreatic cancer will be gained in the course of the trial. TRIAL REGISTRATION: ClinicalTrials.gov-ID: NCT02653313 , Registration date: Dec. 4th, 2015.


Subject(s)
H-1 parvovirus/physiology , Oncolytic Virotherapy/methods , Pancreatic Neoplasms/drug therapy , Administration, Intravenous , Dose-Response Relationship, Drug , Female , Humans , Injections, Intralesional , Male , Neoplasm Metastasis , Oncolytic Virotherapy/adverse effects , Oncolytic Viruses/physiology , Sample Size , Survival Analysis , Treatment Outcome
7.
Article in English | MEDLINE | ID: mdl-25954743

ABSTRACT

Oncolytic virotherapy of cancer is among the innovative modalities being under development and especially promising for targeting tumors, which are resistant to conventional treatments. Presently, at least a dozen of viruses, belonging to nine different virus families, are being tested within the frames of various clinical studies in cancer patients. Continuously growing preclinical evidence showing that the autonomous rat parvovirus H-1 (H-1PV) is able to kill tumor cells that resist conventional treatments and to achieve a complete cure of various human tumors in animal models argues for its inclusion in the arsenal of oncolytic viruses with an especially promising bench to bedside translation potential. Oncolytic parvovirus safe administration to humans relies on the intrinsic preference of these agents for quickly proliferating, metabolically, and biochemically disturbed tumor versus normal cells (tumor selectivity or oncotropism). The present review summarizes and discusses (i) preclinical evidence of H-1PV innocuousness for normal cells and healthy tissues in vitro and in animals, respectively, (ii) toxicological assessments of H-1PV mono- or combined therapy in tumor-bearing virus-permissive animal models, as well as (iii) historical results of experimental infection of human cancer patients with H-1PV. Altogether, these data argue against a risk of H-1PV inducing significant toxic effects in human patients. This highly favorable safety profile allowed the translation of H-1PV preclinical research into a Phase I/IIa clinical trial being currently in progress.

8.
J Korean Neurosurg Soc ; 57(4): 298-302, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25932300

ABSTRACT

This case report describes the symptoms and clinical course of a 35-year-old female patient who was diagnosed with a temporo-sphenoidal encephalocele. It is characterized by herniation of cerebral tissue of the temporal lobe through a defect of the skull base localized in the middle fossa. At the time of first presentation the patient complained about recurrent nasal discharge of clear fluid which had begun some weeks earlier. She also reported that three months earlier she had for the first time suffered from a generalized seizure. In a first therapeutic attempt an endoscopic endonasal approach to the sphenoid sinus was performed. An attempt to randomly seal the suspicious area failed. After frontotemporal craniotomy, it was possible to localize the encephalocele and the underlying bone defect. The herniated brain tissue was resected and the dural defect was closed with fascia of the temporalis muscle. In summary, the combination of recurrent rhinorrhea and a first-time seizure should alert specialists of otolaryngology, neurology and neurosurgery of a temporo-sphenoidal encephalocele as a possible cause. Treatment is likely to require a neurosurgical approach.

9.
Curr Opin Virol ; 13: 17-24, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25841215

ABSTRACT

The H-1 parvovirus (H-1PV) exerts oncosuppressive action that has two components: oncotoxicity and immunostimulation. While many human tumor cells, including conventional drug-resistant ones, can be killed by H-1PV, some fail to support progeny virus production, necessary for infection propagation in neoplastic tissues. This limitation can be overcome through forced selection of H-1PV variants capable of enhanced multiplication and spreading in human tumor cells. In the context of further developing H-1PV for use in cancer therapy, arming it with immunostimulatory CpG motifs under conditions preserving replication and oncolysis enhances its action as an anticancer vaccine adjuvant. A first clinical study of H-1PV treatment in glioma patients has yielded evidence of intratumoral synthesis of the viral oncotoxic protein NS1 and immune cell infiltration.


Subject(s)
Alphaherpesvirinae/physiology , H-1 parvovirus/physiology , Neoplasms/therapy , Oncolytic Viruses/physiology , Alphaherpesvirinae/genetics , Animals , H-1 parvovirus/genetics , Humans , Neoplasms/immunology , Neoplasms/virology , Oncolytic Virotherapy , Oncolytic Viruses/genetics
10.
Comp Med ; 65(1): 36-45, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25730755

ABSTRACT

The autonomous parvovirus H1 (H1PV) is transmitted in rodent populations. The natural host is the rat, in which H1PV infection is pathogenic only in fetuses and newborns. H1PV infection of human cancer cells leads to strong oncolytic effects in preclinical models. In preparation for a clinical trial of H1PV injection in patients with malignant brain tumors, H1PV had to be prepared to Good Manufacturing Practice standards, including extensive toxicology testing in rats. Because the trial involves direct intracerebral injection of H1PV into the tumor and around the resection cavity, possible toxicity to CNS tissue had to be investigated. In addition, quantitative blood levels and the tissue distribution of H1PV after single intracerebral or intravenous injection were measured. Direct injection of H1PV into rat brain at 3 dose levels (maximum, 7.96 × 107 pfu) did not cause any macroscopic or histologic pathology. Furthermore, H1PV infection of the brain did not alter central or autonomous nervous system function. H1PV DNA was detected in almost all organs at 6 h, 48 h, and 14 d after intravenous and intracerebral injection, with the highest levels in liver and spleen. H1PV concentrations in most organs were similar after intravenous and intracerebral injection, indicating high permeability of the blood-brain barrier for this small virus. The current results demonstrate wide organ distribution of H1PV after intravenous or intracerebral injection, confirm that H1PV is nonpathogenic in adult rats even after direct injection into the brain, and form the basis for the ongoing ParvOryx01 clinical trial.


Subject(s)
Central Nervous System/virology , H-1 parvovirus/pathogenicity , Oncolytic Virotherapy/methods , Animals , Biological Availability , Central Nervous System/pathology , DNA, Viral/metabolism , Drug Evaluation, Preclinical , Injections, Intravenous , Liver/virology , Oncolytic Virotherapy/standards , Rats , Spleen/virology , Time Factors , Viral Load
11.
Comp Med ; 65(1): 23-35, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25730754

ABSTRACT

Parvovirus H1 (H1PV) is an autonomous parvovirus that is transmitted in rodent populations. Its natural host is rats. H1PV infection is nonpathogenic except in rat and hamster fetuses and newborns. H1PV infection of human cancer cells caused strong oncolytic effects in preclinical models. For a clinical trial of H1PV in patients with brain tumors, clinical-grade H1PV was produced according to Good Manufacturing Practices. This report focuses on results obtained after a single high-dose intravenous injection of highly purified H1PV in 30 rats and multiple (n = 17) intravenous injections at 3 dose levels in 223 rats. In both studies, no virus-related mortality or macroscopic organ changes related to H1PV occurred. Histopathology after multiple virus injections revealed minimal diffuse bile duct hyperplasia in livers of animals of the highest dose group and germinal center development in spleens of animals from the high-dose group. Liver changes were reversible within a 2-wk recovery period after the last injection. Hematology, blood chemistry, and coagulation analyses did not reveal significant toxicologic changes due to H1PV. Virus injection stimulated the production of IgG antibodies but did not alter mononuclear cell function or induce cytokine release. PCR analysis showed dose-dependent levels of viral genomes in all organs tested. The virus was excreted primarily through feces. These data provide important information regarding H1PV infection in its natural host. Due to the confirmation of the favorable safety profile of H1PV in a permissive animal model, a phase I/IIa clinical trial of H1PV in brain tumor patients could be initiated.


Subject(s)
Genome, Viral/genetics , H-1 parvovirus/pathogenicity , Oncolytic Virotherapy/methods , Parvoviridae Infections/immunology , Parvoviridae Infections/pathology , Animals , Blood Chemical Analysis , Blood Coagulation Tests , Dose-Response Relationship, Immunologic , Drug Evaluation, Preclinical , Feces/virology , H-1 parvovirus/genetics , Immunoglobulin G/immunology , Injections, Intravenous , Liver/pathology , Polymerase Chain Reaction , Rats , Spleen/pathology
12.
Eur J Cancer ; 51(4): 522-532, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25616647

ABSTRACT

PURPOSE: A randomised, open label phase III trial was conducted to evaluate efficacy of nimotuzumab, a monoclonal antibody against epidermal growth factor receptor (EGF-R) added to standard therapy for newly diagnosed glioblastoma. PATIENTS AND METHODS: 149 glioblastoma patients stratified as with or without residual tumour were randomly assigned to receive either intravenous nimotuzumab 400mg weekly added to standard radiochemotherapy followed by 400mg biweekly after twelve weeks or standard radiochemotherapy. Progression status after 52 weeks (12moPFS) and progression-free survival (PFS) based on Macdonald criteria were co-primary and overall survival (OS), toxicity and quality of life secondary end-points. RESULTS: 142 patients were evaluated for efficacy (per protocol cohort). 12 moPFS was 25.6% in the experimental arm and 20.3% in the control group. In residual tumour patients (n=81) median PFS was 5.6 versus 4.0 months, (hazard ratio (HR), 0.87; 95% confidence interval (CI), 0.55-1.37), for patients without residual tumour (n=61) it was 10.6 versus 9.9 months, (HR, 1.01; 95% CI, 0.57-1.77). Median OS in patients with residual tumour was 19.5 versus 16.7 months, (HR, 0.90; 95% CI, 0.52-1.57; P=0.7061), for patients without 23.3 versus 21.0 months (HR, 0.77; 95% CI, 0.41-1.44; P=0.4068). A small cohort of MGMT non-methylated patients with residual tumour showed PFS of 6.2 versus 4.0 months (HR, 0.77; 95% CI, 0.35-1.67; P=0.4997) and OS of 19.0 versus 13.8 months (HR, 0.66; 95% CI, 0.27-1.64; P=0.3648). EGF-R amplification did not correlate with clinical efficacy of nimotuzumab. Nimotuzumab was well tolerated. CONCLUSION: This study, albeit negative, contains hypothesis generating signals supporting evaluation of correlative, efficacy-predicting tumour parameters for nimotuzumab in the treatment of glioblastoma.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Brain Neoplasms/drug therapy , ErbB Receptors/antagonists & inhibitors , Glioblastoma/drug therapy , Adult , Aged , Antibodies, Monoclonal, Humanized/adverse effects , Brain Neoplasms/mortality , Brain Neoplasms/psychology , DNA Modification Methylases/genetics , DNA Repair Enzymes/genetics , Female , Glioblastoma/mortality , Glioblastoma/psychology , Humans , Male , Middle Aged , Quality of Life , Tumor Suppressor Proteins/genetics
13.
Cell Rep ; 5(2): 458-70, 2013 Oct 31.
Article in English | MEDLINE | ID: mdl-24120866

ABSTRACT

The Epstein-Barr virus (EBV) is found in a variety of tumors whose incidence greatly varies around the world. A poorly explored hypothesis is that particular EBV strains account for this phenomenon. We report that M81, a virus isolated from a Chinese patient with nasopharyngeal carcinoma (NPC), shows remarkable similarity to other NPC viruses but is divergent from all other known strains. M81 exhibited a reversed tropism relative to common strains with a reduced ability to infect B cells and a high propensity to infect epithelial cells, which is in agreement with its isolation from carcinomas. M81 spontaneously replicated in B cells in vitro and in vivo at unusually high levels, in line with the enhanced viral replication observed in NPC patients. Spontaneous replication and epitheliotropism could be partly ascribed to polymorphisms within viral proteins. We suggest considering M81 and its closely related isolates as an EBV subtype with enhanced pathogenic potential.


Subject(s)
Herpesvirus 4, Human/physiology , Nasopharyngeal Neoplasms/virology , Amino Acid Sequence , Animals , B-Lymphocytes/cytology , B-Lymphocytes/virology , Carcinoma , Cells, Cultured , Epithelial Cells/cytology , Epithelial Cells/virology , Genome, Viral , HEK293 Cells , Herpesvirus 4, Human/classification , Herpesvirus 4, Human/genetics , Humans , Mice , Mice, Inbred NOD , Molecular Sequence Data , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Phenotype , Polymorphism, Genetic , Sequence Alignment , Sequence Homology, Amino Acid , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
15.
BMC Cancer ; 12: 99, 2012 Mar 21.
Article in English | MEDLINE | ID: mdl-22436661

ABSTRACT

BACKGROUND: The treatment of patients with malignant brain tumors remains a major oncological problem. The median survival of patients with glioblastoma multiforme (GBM), the most malignant type, is only 15 months after initial diagnosis and even less after tumor recurrence. Improvements of standard treatment including surgery and radio-chemotherapy have not lead to major improvements. Therefore, alternative therapeutics such as oncolytic viruses that specifically target and destroy cancer cells are under investigation. Preclinical data of oncolytic parvovirus H-1 (H-1PV) infection of glioma cells demonstrated strong cytotoxic and oncosuppressing effects, leading to a phase I/IIa trial of H-1PV in patients with recurrent GBM (ParvOryx01). ParvOryx01 is the first trial with a replication competent oncolytic virus in Germany. METHODS: ParvOryx01 is an open, non-controlled, two groups, intra-group dose escalation, single center, phase I/IIa trial. 18 patients with recurrent GBM will be treated in 2 groups of 9 patients each. Treatment group 1 will first receive H-1PV by intratumoral injection and second by administration into the walls of the tumor cavity during tumor resection. In treatment group 2 the virus will initially be injected intravenously and afterwards, identical to group 1, into the surrounding brain tissue during tumor removal. Main eligibility criteria are: age of 18 years, unifocal recurrent GBM, amenable to complete or subtotal resection. Dose escalation will be based on the Continual Reassessment Method. The primary objective of the trial is local and systemic safety and tolerability and to determine the maximum tolerated dose (MTD). Secondary objectives are proof of concept (PoC) and Progression-free Survival (PFS) up to 6 months. DISCUSSION: This is the first trial with H-1PV in patients with recurrent GBM. The risks for the participants appear well predictable and justified. Furthermore, ParvOryx01 will be the first assessment of combined intratumoral and intravenous application of an oncolytic virus. Due to its study design the trial will not only generate data on the local effect of H-1PV but it will also investigate the penetration of H-1PV into the tumor after systemic delivery and obtain safety data from systemic delivery possibly supporting clinical trials with H-1PV in other, non-CNS malignancies. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01301430.


Subject(s)
Brain Neoplasms/therapy , Genetic Vectors/administration & dosage , Glioblastoma/therapy , H-1 parvovirus/genetics , Oncolytic Viruses/genetics , Administration, Intravenous , Brain Neoplasms/pathology , Clinical Protocols , Disease Progression , Female , Glioblastoma/pathology , Humans , Injections, Intralesional , Male , Oncolytic Virotherapy , Recurrence
16.
Cytokine Growth Factor Rev ; 21(2-3): 185-95, 2010.
Article in English | MEDLINE | ID: mdl-20211577

ABSTRACT

The experimental infectivity and excellent tolerance of some rodent autonomous parvoviruses in humans, together with their oncosuppressive effects in preclinical models, speak for the inclusion of these agents in the arsenal of oncolytic viruses under consideration for cancer therapy. In particular, wild-type parvovirus H-1PV can achieve a complete cure of various tumors in animal models and kill tumor cells that resist conventional anticancer treatments. There is growing evidence that H-1PV oncosuppression involves an immune component in addition to the direct viral oncolytic effect. This article summarizes the recent assessment of H-1PV antineoplastic activity in glioma, pancreatic ductal adenocarcinoma, and non-Hodgkin lymphoma models, laying the foundation for the present launch of a first phase I/IIa clinical trial on glioma patients.


Subject(s)
Neoplasms/therapy , Oncolytic Virotherapy/methods , Oncolytic Viruses , Parvovirus , Animals , Clinical Trials as Topic , Humans , Immunologic Factors/metabolism , Neoplasms/pathology , Neoplasms/virology , Parvovirus/genetics , Parvovirus/physiology
17.
Neuro Oncol ; 12(8): 804-14, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20299703

ABSTRACT

Oncolytic virotherapy is a potential treatment modality under investigation for various malignancies including malignant brain tumors. Unlike some other natural or modified viruses that show oncolytic activity against cerebral neoplasms, the rodent parvovirus H-1 (H-1PV) is completely apathogenic in humans. H-1PV efficiently kills a number of tumor cells without harm to corresponding normal ones. In this study, the concept of H-1PV-based virotherapy of glioma was tested for rat (RG-2 cell-derived) and for human (U87 cell-derived) gliomas in immunocompetent and immunodeficient rat models, respectively. Large orthotopic rat and human glioma cell-derived tumors were treated with either single stereotactic intratumoral or multiple intravenous (iv) H-1PV injections. Oncolysis was monitored by magnetic resonance imaging and proven by histology. Virus distribution and replication were determined in brain and organs. In immunocompetent rats bearing RG-2-derived tumors, a single stereotactic intratumoral injection of H-1PV and multiple systemic (iv) applications of the virus were sufficient for remission of advanced and even symptomatic intracranial gliomas without damaging normal brain tissue or other organs. H-1PV therapy resulted in significantly improved survival (Kaplan-Meier analysis) in both the rat and human glioma models. Virus replication in tumors indicated a contribution of secondary infection by progeny virus to the efficiency of oncolysis. Virus replication was restricted to tumors, although H-1PV DNA could be detected transiently in adjacent or remote normal brain tissue and in noncerebral tissues. The results presented here and the innocuousness of H-1PV for humans argue for the use of H-1PV as a powerful means to perform oncolytic therapy of malignant gliomas.


Subject(s)
Brain Neoplasms/therapy , Glioma/therapy , Oncolytic Virotherapy/methods , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Brain/pathology , Brain/virology , Brain Neoplasms/pathology , DNA, Viral/isolation & purification , Disease Models, Animal , Glioma/pathology , H-1 parvovirus , Humans , Magnetic Resonance Imaging , Polymerase Chain Reaction , Rats , Xenograft Model Antitumor Assays
18.
J Biomed Biotechnol ; 2010: 350748, 2010.
Article in English | MEDLINE | ID: mdl-20224643

ABSTRACT

PURPOSE: To elucidate the influence of ionizing radiation (IR) on the oncolytic activity of Parvovirus H-1 (H-1PV) in human high-grade glioma cells. METHODS: Short term cultures of human high-grade gliomas were irradiated at different doses and infected with H-1PV. Cell viability was assessed by determining relative numbers of surviving cells. Replication of H-1PV was measured by RT-PCR of viral RNA, fluorescence-activated cell sorter (FACS) analysis and the synthesis of infectious virus particles. To identify a possible mechanism for radiation induced change in the oncolytic activity of H-1PV we performed cell cycle analyses. RESULTS: Previous irradiation rendered glioma cells fully permissive to H-1PV infection. Irradiation 24 hours prior to H-1PV infection led to increased cell killing most notably in radioresistant glioma cells. Intracellular levels of NS-1, the main effector of H-1PV induced cytotoxicity, were elevated after irradiation. S-phase levels were increased one day after irradiation improving S-phase dependent viral replication and cytotoxicity. CONCLUSION: This study demonstrates intact susceptibility of previously irradiated glioma-cells for H-1PV induced oncolysis. The combination of ionizing radiation followed by H-1PV infection increased viral cytotoxicity, especially in radioresistant gliomas. These findings support the ongoing development of a clinical trial of H-1PV in patients with recurrent glioblastomas.


Subject(s)
Cell Survival/radiation effects , Glioma/physiopathology , Glioma/virology , H-1 parvovirus/physiology , H-1 parvovirus/radiation effects , Oncolytic Virotherapy/methods , Oncolytic Viruses/physiology , Cell Cycle/radiation effects , Cell Line , Combined Modality Therapy , Humans , Oncolytic Viruses/radiation effects
19.
Bioeng Bugs ; 1(6): 429-33, 2010.
Article in English | MEDLINE | ID: mdl-21468212

ABSTRACT

The prognosis of malignant brain tumors remains extremely bad in spite of moderate improvements of conventional treatments. A promising alternative approach is the use of oncolytic viruses. Strategies to improve viral toxicity include the combination of oncolytic viruses with standard therapies. Parvovirus H-1 (H-1PV) is an oncolytic virus with proven toxicity in glioma cells. Recently it has been demonstrated that the combination of ionizing radiation (IR) with H-1PV showed promising results. Previously irradiated glioma cells remained fully permissive for H-1PV induced cytotoxicity supporting the use of H-1PV for recurrent gliomas, which typically arise from irradiated cell clones. When glioma cells were infected with H-1PV shortly (24 h) after IR, cell killing improved and only the combination of both treatments lead to complete long-term tumor cell killing. The latter finding raises the question whether IR in combination with H-1PV exerts an additional therapeutic effect on highly resistant glioma stem cells. A likely translation into current clinical treatment protocols is to use stereotactic radiation of non-resectable recurrent gliomas followed by intratumoral injection of H-1PV to harvest the synergistic effects of combination treatment.


Subject(s)
Brain Neoplasms/radiotherapy , Brain Neoplasms/virology , Glioma/radiotherapy , Glioma/virology , H-1 parvovirus/physiology , Oncolytic Virotherapy/methods , Brain Neoplasms/pathology , Cell Survival/radiation effects , Combined Modality Therapy , Glioma/pathology , Humans , Oncolytic Viruses/physiology , Tumor Cells, Cultured/radiation effects , Tumor Cells, Cultured/virology
20.
J Virol ; 83(9): 4616-23, 2009 May.
Article in English | MEDLINE | ID: mdl-19244320

ABSTRACT

Epstein-Barr virus (EBV) infection is mediated by several viral envelope glycoproteins. We have assessed gp110's functions during the virus life cycle using a mutant that lacks BALF4 (DeltaBALF4). Exposure of various cell lines and primary cell samples of epithelial or lymphoid lineages to the DeltaBALF4 mutant failed to establish stable infections. The DeltaBALF4 virus, however, did not differ from wild-type EBV in its ability to bind and become internalized into primary B cells, in which it elicited a potent T-cell-specific immune reaction against virion constituents. These findings show that DeltaBALF4 viruses can reach the endosome-lysosome compartment and dovetail nicely with the previously identified contribution of gp110 to virus-cell fusion. Other essential steps of the virus life cycle were unaffected in the viral mutant; DNA lytic replication and viral titers were not altered in the absence of gp110, and DeltaBALF4 viruses complemented in trans transformed infected B cells with an efficiency indistinguishable from that observed with wild-type viruses. All of the steps of virus maturation could be observed in lytically induced 293/DeltaBALF4 cells. Induction of lymphoblastoid cells generated with transiently complemented DeltaBALF4 virus led to the production of rare mature virions. We therefore infer that gp110 is not required for virus maturation and egress in 293 cells or in B cells. The DeltaBALF4 virus's phenotypic traits, an inability to infect human cells coupled with potent antigenicity, potentially qualify this mutant as a live vaccine. It will provide a useful tool for the detailed study of EBV-cell interactions in a physiological context.


Subject(s)
B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Endosomes/immunology , Herpesvirus 4, Human/immunology , T-Lymphocytes, Cytotoxic/immunology , Viral Proteins/immunology , Viral Proteins/metabolism , Cell Line , DNA Replication/genetics , Gene Deletion , Genome, Viral/genetics , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Herpesvirus 4, Human/ultrastructure , Humans , Microscopy, Electron , Mutation/genetics , Viral Proteins/genetics , Virion/genetics , Virion/immunology , Virion/metabolism , Virion/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...