Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 592(7852): 86-92, 2021 04.
Article in English | MEDLINE | ID: mdl-33473216

ABSTRACT

The anatomy of the mammalian visual system, from the retina to the neocortex, is organized hierarchically1. However, direct observation of cellular-level functional interactions across this hierarchy is lacking due to the challenge of simultaneously recording activity across numerous regions. Here we describe a large, open dataset-part of the Allen Brain Observatory2-that surveys spiking from tens of thousands of units in six cortical and two thalamic regions in the brains of mice responding to a battery of visual stimuli. Using cross-correlation analysis, we reveal that the organization of inter-area functional connectivity during visual stimulation mirrors the anatomical hierarchy from the Allen Mouse Brain Connectivity Atlas3. We find that four classical hierarchical measures-response latency, receptive-field size, phase-locking to drifting gratings and response decay timescale-are all correlated with the hierarchy. Moreover, recordings obtained during a visual task reveal that the correlation between neural activity and behavioural choice also increases along the hierarchy. Our study provides a foundation for understanding coding and signal propagation across hierarchically organized cortical and thalamic visual areas.


Subject(s)
Action Potentials/physiology , Visual Cortex/anatomy & histology , Visual Cortex/physiology , Animals , Datasets as Topic , Electrophysiology , Male , Mice , Mice, Inbred C57BL , Photic Stimulation , Thalamus/anatomy & histology , Thalamus/cytology , Thalamus/physiology , Visual Cortex/cytology
2.
J Vis ; 18(12): 1, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30383213

ABSTRACT

Rhesus monkeys are a valuable model for studies of primate visual contrast sensitivity. Their visual systems are similar to that of humans, and they can be trained to perform detection tasks at threshold during neurophysiological recording. However, the stimulus dependence of rhesus monkey contrast sensitivity has not been well characterized. Temporal frequency, color, and retinal eccentricity affect the contrast sensitivity of humans in reasonably well-understood ways. To ask whether these factors affect monkey sensitivity similarly, we measured detection thresholds of two monkeys using a two-alternative, forced-choice task and compared them to thresholds of two human subjects who performed the same task. Stimuli were drifting Gabor patterns that varied in temporal frequency (1-60 Hz), L- and M-cone modulation ratio, and retinal eccentricity (2°-14° from the fovea). Thresholds were fit by a model that assumed a pair of linear detection mechanisms: a luminance contrast detector and a red-green contrast detector. Analysis of model fits indicated that the sensitivity of these mechanisms varied across the visual field, but their temporal and spectral tuning did not. Human and monkey temporal contrast sensitivity was similar across the conditions tested, but monkeys were twofold less sensitive to low-frequency, luminance modulations.


Subject(s)
Color Perception/physiology , Contrast Sensitivity/physiology , Fovea Centralis/physiology , Models, Biological , Retinal Cone Photoreceptor Cells/physiology , Animals , Female , Humans , Light , Macaca mulatta , Male , Middle Aged , Psychophysics , Retina/radiation effects , Sensory Thresholds , Visual Fields , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...