Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Sci Rep ; 14(1): 11896, 2024 05 24.
Article in English | MEDLINE | ID: mdl-38789475

ABSTRACT

The immune effector mechanisms involved in protecting against severe COVID-19 infection in elderly nursing home residents following vaccination or natural infection are not well understood. Here, we measured SARS-CoV-2 Spike (S)-directed functional antibody responses, including neutralizing antibodies (NtAb) and antibody Fc-mediated NK cell activity (degranulation and IFNγ production), against the Wuhan-Hu-1, BA.4/5 (for NtAb), and Omicron XBB.1.5 variants in elderly nursing home residents (n = 39; median age, 91 years) before and following a third (pre- and post-3D) and a fourth (pre- and post-4D) mRNA COVID-19 vaccine dose. Both 3D and 4D boosted NtAb levels against both (sub)variants. Likewise, 3D and 4D increased the ability of sera to trigger both LAMP1- and IFNγ-producing NK cells, in particular against XBB.1.5. In contrast to NtAb titres, the frequencies of LAMP1- and IFNγ-producing NK cells activated by antibodies binding to Wuhan-Hu-1 and Omicron XBB.1.5 S were comparable at all testing times. Stronger functional antibody responses were observed in vaccine-experienced participants compared to vaccine-naïve at some testing times. These findings can contribute to identifying a reliable correlate of protection in elderly nursing home residents against severe COVID-19 and inform future vaccine strategies in this population group.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Nursing Homes , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Aged, 80 and over , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , SARS-CoV-2/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Female , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Male , Immunization, Secondary , Killer Cells, Natural/immunology , Aged , Vaccination/methods , Antibody Formation/immunology
2.
Virus Evol ; 10(1): veae032, 2024.
Article in English | MEDLINE | ID: mdl-38779130

ABSTRACT

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can infect various human tissues and cell types, principally via interaction with its cognate receptor angiotensin-converting enzyme-2 (ACE2). However, how the virus evolves in different cellular environments is poorly understood. Here, we used experimental evolution to study the adaptation of the SARS-CoV-2 spike to four human cell lines expressing different levels of key entry factors. After twenty passages of a spike-expressing recombinant vesicular stomatitis virus (VSV), cell-type-specific phenotypic changes were observed and sequencing allowed the identification of sixteen adaptive spike mutations. We used VSV pseudotyping to measure the entry efficiency, ACE2 affinity, spike processing, TMPRSS2 usage, and entry pathway usage of all the mutants, alone or in combination. The fusogenicity of the mutant spikes was assessed with a cell-cell fusion assay. Finally, mutant recombinant VSVs were used to measure the fitness advantage associated with selected mutations. We found that the effects of these mutations varied across cell types, both in terms of viral entry and replicative fitness. Interestingly, two spike mutations (L48S and A372T) that emerged in cells expressing low ACE2 levels increased receptor affinity, syncytia induction, and entry efficiency under low-ACE2 conditions. Our results demonstrate specific adaptation of the SARS-CoV-2 spike to different cell types and have implications for understanding SARS-CoV-2 tissue tropism and evolution.

3.
PLoS One ; 19(2): e0297291, 2024.
Article in English | MEDLINE | ID: mdl-38363760

ABSTRACT

BACKGROUND: The oral cavity is the site of entry and replication for many respiratory viruses. Furthermore, it is the source of droplets and aerosols that facilitate viral transmission. It is thought that appropriate oral hygiene that alters viral infectivity might reduce the spread of respiratory viruses and contribute to infection control. MATERIALS AND METHODS: Here, we analyzed the antiviral activity of cetylpyridinium chloride (CPC), chlorhexidine (CHX), and three commercial CPC and CHX-containing mouthwash preparations against the Influenza A virus and the Respiratory syncytial virus. To do so the aforementioned compounds and preparations were incubated with the Influenza A virus or with the Respiratory syncytial virus. Next, we analyzed the viability of the treated viral particles. RESULTS: Our results indicate that CPC and CHX decrease the infectivity of both the Influenza A virus and the Respiratory Syncytial virus in vitro between 90 and 99.9% depending on the concentration. Likewise, CPC and CHX-containing mouthwash preparations were up to 99.99% effective in decreasing the viral viability of both the Influenza A virus and the Respiratory syncytial virus in vitro. CONCLUSION: The use of a mouthwash containing CPC or CHX alone or in combination might represent a cost-effective measure to limit infection and spread of enveloped respiratory viruses infecting the oral cavity, aiding in reducing viral transmission. Our findings may stimulate future clinical studies to evaluate the effects of CPC and CHX in reducing viral respiratory transmissions.


Subject(s)
Anti-Infective Agents, Local , Influenza A virus , Chlorhexidine , Mouthwashes , Cetylpyridinium/pharmacology , Respiratory Syncytial Viruses , Antiviral Agents/pharmacology
4.
Comput Biol Med ; 171: 108163, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38417382

ABSTRACT

SARS-CoV-2 must bind its principal receptor, ACE2, on the target cell to initiate infection. This interaction is largely driven by the receptor binding domain (RBD) of the viral Spike (S) protein. Accordingly, antiviral compounds that can block RBD/ACE2 interactions can constitute promising antiviral agents. To identify such molecules, we performed a virtual screening of the Selleck FDA approved drugs and the Selleck database of Natural Products using a multistep computational procedure. An initial set of candidates was identified from an ensemble docking process using representative structures determined from the analysis of four 3 µ s molecular dynamics trajectories of the RBD/ACE2 complex. Two procedures were used to construct an initial set of candidates including a standard and a pharmacophore guided docking procedure. The initial set was subsequently subjected to a multistep sieving process to reduce the number of candidates to be tested experimentally, using increasingly demanding computational procedures, including the calculation of the binding free energy computed using the MMPBSA and MMGBSA methods. After the sieving process, a final list of 10 candidates was proposed, compounds which were subsequently purchased and tested ex-vivo. The results identified estradiol cypionate and telmisartan as inhibitors of SARS-CoV-2 entry into cells. Our findings demonstrate that the methodology presented here enables the discovery of inhibitors targeting viruses for which high-resolution structures are available.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Molecular Docking Simulation , Drug Repositioning/methods , Angiotensin-Converting Enzyme 2 , Molecular Dynamics Simulation , Protein Binding
5.
Plant Biotechnol J ; 22(4): 876-891, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37966715

ABSTRACT

Viral nanoparticles (VNPs) are a new class of virus-based formulations that can be used as building blocks to implement a variety of functions of potential interest in biotechnology and nanomedicine. Viral coat proteins (CP) that exhibit self-assembly properties are particularly appropriate for displaying antigens and antibodies, by generating multivalent VNPs with therapeutic and diagnostic potential. Here, we developed genetically encoded multivalent VNPs derived from two filamentous plant viruses, potato virus X (PVX) and tobacco etch virus (TEV), which were efficiently and inexpensively produced in the biofactory Nicotiana benthamiana plant. PVX and TEV-derived VNPs were decorated with two different nanobodies recognizing two different regions of the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein. The addition of different picornavirus 2A ribosomal skipping peptides between the nanobody and the CP allowed for modulating the degree of VNP decoration. Nanobody-decorated VNPs purified from N. benthamiana tissues successfully recognized the RBD antigen in enzyme-linked immunosorbent assays and showed efficient neutralization activity against pseudoviruses carrying the Spike protein. Interestingly, multivalent PVX and TEV-derived VNPs exhibited a neutralizing activity approximately one order of magnitude higher than the corresponding nanobody in a dimeric format. These properties, combined with the ability to produce VNP cocktails in the same N. benthamiana plant based on synergistic infection of the parent PVX and TEV, make these green nanomaterials an attractive alternative to standard antibodies for multiple applications in diagnosis and therapeutics.


Subject(s)
COVID-19 , Nanoparticles , Plant Viruses , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus , Humans , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Single-Domain Antibodies/genetics , COVID-19/genetics , Nanoparticles/chemistry , Antibodies, Neutralizing , Antibodies, Viral
6.
Nat Commun ; 14(1): 6417, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37828013

ABSTRACT

Despite their fundamental role in resolving viral infections, our understanding of how polyclonal neutralizing antibody responses target non-enveloped viruses remains limited. To define these responses, we obtained the full antigenic profile of multiple human and mouse polyclonal sera targeting the capsid of a prototypical picornavirus, coxsackievirus B3. Our results uncover significant variation in the breadth and strength of neutralization sites targeted by individual human polyclonal responses, which contrasted with homogenous responses observed in experimentally infected mice. We further use these comprehensive antigenic profiles to define key structural and evolutionary parameters that are predictive of escape, assess epitope dominance at the population level, and reveal a need for at least two mutations to achieve significant escape from multiple sera. Overall, our data provide a comprehensive analysis of how polyclonal sera target a non-enveloped viral capsid and help define both immune dominance and escape at the population level.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Animals , Humans , Mice , Epitopes , Serum , Mutation , Capsid Proteins
7.
J Med Chem ; 66(15): 10432-10457, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37471688

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes COVID-19, by infecting cells via the interaction of its spike protein (S) with the primary cell receptor angiotensin-converting enzyme (ACE2). To search for inhibitors of this key step in viral infection, we screened an in-house library of multivalent tryptophan derivatives. Using VSV-S pseudoparticles, we identified compound 2 as a potent entry inhibitor lacking cellular toxicity. Chemical optimization of 2 rendered compounds 63 and 65, which also potently inhibited genuine SARS-CoV-2 cell entry. Thermofluor and microscale thermophoresis studies revealed their binding to S and to its isolated receptor binding domain (RBD), interfering with the interaction with ACE2. High-resolution cryoelectron microscopy structure of S, free or bound to 2, shed light on cell entry inhibition mechanisms by these compounds. Overall, this work identifies and characterizes a new class of SARS-CoV-2 entry inhibitors with clear potential for preventing and/or fighting COVID-19.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Tryptophan/pharmacology , Tryptophan/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Cryoelectron Microscopy , Protein Binding
8.
Int J Mol Sci ; 24(14)2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37511355

ABSTRACT

SARS-CoV-2, the causal agent of COVID-19, is a new coronavirus that has rapidly spread worldwide and significantly impacted human health by causing a severe acute respiratory syndrome boosted by a pulmonary hyperinflammatory response. Previous data from our lab showed that the newly excysted juveniles of the helminth parasite Fasciola hepatica (FhNEJ) modulate molecular routes within host cells related to vesicle-mediated transport and components of the innate immune response, which could potentially be relevant during viral infections. Therefore, the aim of the present study was to determine whether FhNEJ-derived molecules influence SARS-CoV-2 infection efficiency in Vero cells. Pre-treatment of Vero cells with a tegument-enriched antigenic extract of FhNEJ (FhNEJ-TEG) significantly reduced infection by both vesicular stomatitis virus particles pseudotyped with the SARS-CoV-2 Spike protein (VSV-S2) and live SARS-CoV-2. Pre-treatment of the virus itself with FhNEJ-TEG prior to infection also resulted in reduced infection efficiency similar to that obtained by remdesivir pre-treatment. Remarkably, treatment of Vero cells with FhNEJ-TEG after VSV-S2 entry also resulted in reduced infection efficiency, suggesting that FhNEJ-TEG may also affect post-entry steps of the VSV replication cycle. Altogether, our results could potentially encourage the production of FhNEJ-derived molecules in a safe, synthetic format for their application as therapeutic agents against SARS-CoV-2 and other related respiratory viruses.


Subject(s)
COVID-19 , Fasciola hepatica , Animals , Chlorocebus aethiops , Humans , SARS-CoV-2 , Vero Cells , Antiviral Agents/pharmacology
9.
J Med Virol ; 95(7): e28900, 2023 07.
Article in English | MEDLINE | ID: mdl-37403730

ABSTRACT

Antibodies triggering Fc-mediated NK cell activity may contribute to protection against disease caused by SARS-CoV-2 infection in humans. However, how these Fc-mediated humoral responses compare between individuals displaying hybrid immunity (Vac-ex) and those fully vaccinated with no history of SARS-CoV-2 infection (Vac-n) and whether they correlate with neutralizing antibody (NtAb) responses remains largely undetermined. In this retrospective study serum samples from 50 individuals (median age, 44.5 years; range, 11-85; 25 males), 25 Vac-ex and 25 Vac-n were studied. A flow-cytometry-based antibody-mediated NK-cell activation assay was used to quantitate effector NK-cells stimulated to express LAMP1 (lysosomal associated membrane protein 1), MIP1 (Macrophage inflammatory protein 1), and interferon-γ (IFNγ); NK cells isolated from two donors (D1 and D2) were used. NtAb levels targeting the Spike protein of Wuhan-Hu-1 and Omicron BA.1 SARS-CoV-2 variants were quantitated using a SARS-CoV-2 S pseudotyped neutralization assay. Regardless of the SARS-CoV-2 variant S antigen used in the NK-cell activation assay, the frequency of NK cells stimulated to express LAMP-1, MIP1ß, and IFNγ was higher in Vac-ex compared with Vac-n (p values ranging from 0.07 to 0.006) for D1; this was only seen for BA.1 when NK cells from D2 were employed. The frequency of functional NK cells activated by antibody binding to either Wuhan-Hu-1 or Omicron BA.1 S protein was not significantly different for both VAC-ex and VAC-n. In contrast, NtAb titers against BA.1 were around 10-fold lower than that against Wuhan-Hu-1. Vac-ex displayed higher NtAb titers against both (sub)variants than Vac-n. NK-cell responses correlated poorly with NtAb titers (ρ ≤ 0.30). The data demonstrate higher cross-reactivity across variants of concern for antibodies triggering Fc-mediated NK cell than for NtAb. Moreover, Vac-Ex seemed to display more robust functional antibody responses as compared with Vac-n.


Subject(s)
Blood Group Antigens , COVID-19 , Male , Humans , Adult , SARS-CoV-2/genetics , Antibodies, Neutralizing , Antibody Formation , Retrospective Studies , Spike Glycoprotein, Coronavirus/genetics , COVID-19/prevention & control , Killer Cells, Natural , Interferon-gamma , Antibodies, Viral
10.
iScience ; 26(6): 106802, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37197591

ABSTRACT

Breastmilk contains antibodies that could protect breastfed infants from infections. In this work, we examined if antibodies in breastmilk could neutralize SARS-CoV-2 in 84 breastmilk samples from women that were either vaccinated (Comirnaty, mRNA-1273, or ChAdOx1), infected with SARS-CoV-2, or both infected and vaccinated. The neutralization capacity of these sera was tested using pseudotyped vesicular stomatitis virus carrying either the Wuhan-Hu-1, Delta, or BA.1 Omicron spike proteins. We found that natural infection resulted in higher neutralizing titers and that neutralization correlated positively with levels of immunoglobulin A in breastmilk. In addition, significant differences in the capacity to produce neutralizing antibodies were observed between both mRNA-based vaccines and the adenovirus-vectored ChAdOx1 COVID-19 vaccine. Overall, our results indicate that breastmilk from naturally infected women or those vaccinated with mRNA-based vaccines contains SARS-CoV-2 neutralizing antibodies that could potentially provide protection to breastfed infants from infection.

11.
J Med Virol ; 95(4): e28739, 2023 04.
Article in English | MEDLINE | ID: mdl-37185857

ABSTRACT

Supervised machine learning (ML) methods have been used to predict antibody responses elicited by COVID-19 vaccines in a variety of clinical settings. Here, we explored the reliability of a ML approach to predict the presence of detectable neutralizing antibody responses (NtAb) against Omicron BA.2 and BA.4/5 sublineages in the general population. Anti-SARS-CoV-2 receptor-binding domain (RBD) total antibodies were measured by the Elecsys® Anti-SARS-CoV-2 S assay (Roche Diagnostics) in all participants. NtAbs against Omicron BA.2 and BA4/5 were measured using a SARS-CoV-2 S pseudotyped neutralization assay in 100 randomly selected sera. A ML model was built using the variables of age, vaccination (number of doses) and SARS-CoV-2 infection status. The model was trained in a cohort (TC) comprising 931 participants and validated in an external cohort (VC) including 787 individuals. Receiver operating characteristics analysis indicated that an anti-SARS-CoV-2 RBD total antibody threshold of 2300 BAU/mL best discriminated between participants either exhibiting or not detectable Omicron BA.2 and Omicron BA.4/5-Spike targeted NtAb responses (87% and 84% precision, respectively). The ML model correctly classified 88% (793/901) of participants in the TC: 717/749 (95.7%) of those displaying ≥2300 BAU/mL and 76/152 (50%) of those exhibiting antibody levels <2300 BAU/mL. The model performed better in vaccinated participants, either with or without prior SARS-CoV-2 infection. The overall accuracy of the ML model in the VC was comparable. Our ML model, based upon a few easily collected parameters for predicting neutralizing activity against Omicron BA.2 and BA.4/5 (sub)variants circumvents the need to perform not only neutralization assays, but also anti-S serological tests, thus potentially saving costs in the setting of large seroprevalence studies.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , COVID-19 Vaccines , Reproducibility of Results , SARS-CoV-2 , Seroepidemiologic Studies , Machine Learning , Antibodies, Neutralizing , Antibodies, Viral
13.
J Med Virol ; 95(1): e28397, 2023 01.
Article in English | MEDLINE | ID: mdl-36504019

ABSTRACT

The information provided by SARS-CoV-2 spike (S)-targeting immunoassays can be instrumental in clinical-decision making. We compared the performance of the Elecsys® Anti-SARS-CoV-2 S assay (Roche Diagnostics) and the LIAISON® SARS-CoV-2 TrimericS IgG assay (DiaSorin) using a total of 1176 sera from 797 individuals, of which 286 were from vaccinated-SARS-CoV-2/experienced (Vac-Ex), 581 from vaccinated/naïve (Vac-N), 147 from unvaccinated/experienced (Unvac-Ex), and 162 from unvaccinated/naïve (Unvac-N) individuals. The Roche assay returned a higher number of positive results (907 vs. 790; p = 0.45; overall sensitivity: 89.3% vs. 77.6%). The concordance between results provided by the two immunoassays was higher for sera from Vac-N (Ï°: 0.58; interquartile ranges [IQR]: 0.50-0.65) than for sera from Vac-Ex (Ï°: 0.19; IQR: -0.14 to 0.52) or Unvac-Ex (Ï°: 0.18; IQR: 0.06-0.30). Discordant results occurred more frequently among sera from Unvac-Ex (34.7%) followed by Vac-N (14.6%) and Vac-Ex (2.7%). Antibody levels quantified by both immunoassays were not significantly different when <250 (p = 0.87) or <1000 BAU/ml (p = 0.13); in contrast, for sera ≥1000 BAU/ml, the Roche assay returned significantly higher values than the DiaSorin assay (p < 0.008). Neutralizing antibody titers (NtAb) were measured in 127 sera from Vac-Ex or Vac-N using a S-pseudotyped virus neutralization assay of Wuhan-Hu-1, Omicron BA.1, and Omicron BA.2. The correlation between antibody levels and NtAb titers was higher for sera from Vac-N than those from Vac-Ex, irrespective of the (sub)variant considered. In conclusion, neither qualitative nor quantitative results returned by both immunoassays are interchangeable. The performance of both assays was found to be greatly influenced by the vaccination and SARS-CoV-2 infection status of individuals.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Luminescence , COVID-19/diagnosis , SARS-CoV-2 , Vaccination , Antibodies, Viral , Immunoglobulin G , Antibodies, Neutralizing , Immunoassay
14.
J Med Virol ; 95(1): e28284, 2023 01.
Article in English | MEDLINE | ID: mdl-36333837

ABSTRACT

Studies investigating the cumulative incidence of and immune status against SARS-CoV-2 infection provide valuable information for shaping public health decision-making. A cross-sectional study on 935 participants, conducted in the Valencian Community (VC), measuring anti-SARS-CoV-2-receptor binding domain-RBD-total antibodies and anti-Nucleocapsid (N)-IgGs via electrochemiluminescence assays. Quantitation of neutralizing antibodies (NtAb) against ancestral and Omicron BA.1 and BA.2 variants and enumeration of SARS-CoV-2-S specific-IFNγ-producing CD4+ and CD8+ T cells was performed in 100 and 137 participants, respectively. The weighted cumulative incidence was 51.9% (95% confidence interval [CI]: 48.7-55.1) and was inversely related to age. Anti-RBD total antibodies were detected in 97% of participants; vaccinated and SARS-CoV-2-experienced (VAC-ex; n = 442) presented higher levels (p < 0.001) than vaccinated/naïve (VAC-n; n = 472) and nonvaccinated/experienced (UNVAC-ex; n = 63) subjects. Antibody levels correlated inversely with time elapsed since last vaccine dose in VAC-n (Rho, -0.52; p < 0.001) but not in VAC-ex (rho -0.02; p = 0.57). Heterologous booster shots resulted in increased anti-RBD antibody levels compared with homologous schedules in VAC-n, but not in VAC-ex. NtAbs against Omicron BA.1 were detected in 94%, 75%, and 50% of VAC-ex, VAC-n and UNVAC-ex groups, respectively. For Omicron BA.2, the figures were 97%, 84%, and 40%, respectively. SARS-CoV-2-S-reactive IFN-γ T cells were detected in 73%, 75%, and 64% of VAC-ex, VAC-n and UNVAC-ex, respectively. Median frequencies for both T-cell subsets were comparable across groups. In summary, by April 2022, around half of the VC population had been infected with SARS-CoV-2 and, due to extensive vaccination, displayed hybrid immunity.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , SARS-CoV-2/genetics , Spain/epidemiology , CD8-Positive T-Lymphocytes , Cross-Sectional Studies , Incidence , Antibodies, Neutralizing , Antibodies, Viral
16.
Microorganisms ; 10(11)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36422345

ABSTRACT

The effect of a third vaccine dose (3D) of homologous mRNA vaccine on blood levels of SARS-CoV-2-receptor binding domain (RBD)-total antibodies was assessed in 40 hemodialysis patients (HD) and 21 kidney transplant recipients (KTR) at a median of 46 days after 3D. Anti-RBD antibodies were detected in 39/40 HD and 19/21 KTR. Overall, 3D boosted anti-RBD antibody levels (median: 58-fold increase). Neutralizing antibodies (NtAb) against the Wuhan-Hu-1, Delta, and Omicron variants were detected in 14, 13, and 11 out of 14 HD patients, and in 5, 5, and 4 out of 8 KTR patients, respectively. The median fold increase in NtAb titers in HD patients was 77, 28, and 5 and 56, 37, and 9 in KTR patients for each respective variant. SARS-CoV-2-S S-IFN-γ-producing CD8+ and CD4+ T-cell responses were detected in the majority of HD (35 and 36/37, respectively) and all KTR (16/16) patients at 3D. Overall, the administration of 3D boosted T-cell levels in both population groups. In conclusion, a homologous mRNA COVID-19 vaccine 3D exerts a booster effect on anti-RBD antibodies, NtAb binding to Wuhan-Hu-1, Delta, and Omicron variants, and SARS-CoV-2-S-IFN-γ-producing T cells in both HD and KTR patients. The magnitude of the effect was more marked in HD than KTR patients.

17.
PLoS Pathog ; 18(7): e1010631, 2022 07.
Article in English | MEDLINE | ID: mdl-35816514

ABSTRACT

The S:A222V point mutation, within the G clade, was characteristic of the 20E (EU1) SARS-CoV-2 variant identified in Spain in early summer 2020. This mutation has since reappeared in the Delta subvariant AY.4.2, raising questions about its specific effect on viral infection. We report combined serological, functional, structural and computational studies characterizing the impact of this mutation. Our results reveal that S:A222V promotes an increased RBD opening and slightly increases ACE2 binding as compared to the parent S:D614G clade. Finally, S:A222V does not reduce sera neutralization capacity, suggesting it does not affect vaccine effectiveness.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , Genetic Background , Humans , Mutation , Peptidyl-Dipeptidase A/metabolism , Protein Binding , Receptors, Virus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/metabolism
18.
Front Microbiol ; 13: 880394, 2022.
Article in English | MEDLINE | ID: mdl-35615506

ABSTRACT

RNA viruses have limited coding capacity and must therefore successfully subvert cellular processes to facilitate their replication. A fundamental challenge faced by both viruses and their hosts is the ability to achieve the correct folding and assembly of their proteome while avoiding misfolding and aggregation. In cells, this process is facilitated by numerous chaperone systems together with a large number of co-chaperones. In this work, we set out to define the chaperones and co-chaperones involved in the replication of respiratory syncytial virus (RSV). Using an RNAi screen, we identify multiple members of cellular protein folding networks whose knockdown alters RSV replication. The reduced number of chaperones and co-chaperones identified in this work can facilitate the unmasking of specific chaperone subnetworks required for distinct steps of the RSV life cycle and identifies new potential targets for antiviral therapy. Indeed, we show that the pharmacological inhibition of one of the genes identified in the RNAi screen, valosin-containing protein (VCP/p97), can impede the replication of RSV by interfering with the infection cycle at multiple steps.

19.
J Med Virol ; 94(9): 4216-4223, 2022 09.
Article in English | MEDLINE | ID: mdl-35585782

ABSTRACT

We investigated whether peripheral blood levels of SARS-CoV-2 Spike (S) receptor binding domain antibodies (anti-RBD), neutralizing antibodies (NtAb) targeting Omicron S, and S-reactive-interferon (IFN)-γ-producing CD4+ and CD8+ T cells measured after a homologous booster dose (3D) with the Comirnaty® vaccine was associated with the likelihood of subsequent breakthrough infections due to the Omicron variant. An observational study including 146 nursing home residents (median age, 80 years; range, 66-99; 109 female) evaluated for an immunological response after 3D (at a median of 16 days). Anti-RBD total antibodies were measured by chemiluminescent immunoassay. NtAb were quantified by an Omicron S pseudotyped virus neutralization assay. SARS-CoV-2-S specific-IFNγ-producing CD4+ and CD8+ T cells were enumerated by whole-blood flow cytometry for intracellular cytokine staining. In total, 33/146 participants contracted breakthrough Omicron infection (symptomatic in 30/33) within 4 months after 3D. Anti-RBD antibody levels were comparable in infected and uninfected participants (21 123 vs. 24 723 BAU/ml; p = 0.34). Likewise, NtAb titers (reciprocal IC50 titer, 157 vs. 95; p = 0.32) and frequency of virus-reactive CD4+ (p = 0.82) and CD8+ (p = 0.91) T cells were similar across participants in both groups. anti-RBD antibody levels and NtAb titers estimated at around the time of infection were also comparable (3445 vs. 4345 BAU/ml; p = 0.59 and 188.5 vs. 88.9; p = 0.70, respectively). Having detectable NtAb against Omicron or SARS-CoV-2-S-reactive-IFNγ-producing CD4+ or CD8+ T cells after 3D was not correlated with increased protection from breakthrough infection (OR, 1.50; p = 0.54; OR, 0.0; p = 0.99 and OR 3.70; p = 0.23, respectively). None of the immune parameters evaluated herein, including NtAb titers against the Omicron variant, may reliably predict at the individual level the risk of contracting COVID-19 due to the Omicron variant in nursing home residents.


Subject(s)
COVID-19 Vaccines , COVID-19 , Aged, 80 and over , Antibodies, Neutralizing , Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , Female , Humans , Nursing Homes , SARS-CoV-2 , Viral Envelope Proteins
20.
Sci Rep ; 12(1): 3788, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260713

ABSTRACT

Immunosenescence may impact the functionality and breadth of vaccine-elicited humoral immune responses. The ability of sera to neutralize the SARS-CoV-2 spike protein (S) from Beta, Gamma, Delta, and Epsilon variants of concern (VOCs) relative to the ancestral Wuhan-Hu-1 strain was compared in Comirnaty COVID-19-vaccinated elderly nursing home residents, either SARS-CoV-2 naïve (n = 22) or experienced (n = 8), or SARS-CoV-2 naïve younger individuals (n = 18) and non-vaccinated individuals who recovered from severe COVID-19 (n = 19). In all groups, except that including SARS-CoV-2-experienced nursing home residents, some participants lacked NtAb against one or more VOCs, mainly the Beta variant (15-20%). Serum NtAb titers were lowest against the Beta variant followed by Gamma, Delta and Epsilon variants. Overall, fold change reduction in NtAb titers relative to the ancestral strain was greatest for the Beta variant (6.7-19.4) followed by Gamma (4.8-16.0), Epsilon (2.9-13.4), and Delta (3.5-6.5) variants, although subtle differences were observed for Beta, Epsilon and Delta variants across comparison groups. In summary, older age, frailty, and concurrence of co-morbidities had no major impact on the serum NtAb activity profile against SARS-CoV-2 VOCs.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , SARS-CoV-2/immunology , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/virology , COVID-19 Vaccines/immunology , Female , Humans , Immunity, Humoral , Male , Middle Aged , Neutralization Tests , Nursing Homes , Protein Domains/immunology , Retrospective Studies , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...