Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IUBMB Life ; 70(9): 836-844, 2018 09.
Article in English | MEDLINE | ID: mdl-30092117

ABSTRACT

Bacterial persistence, the ability of bacteria to survive high concentrations of antibiotics for extended periods of time, is an important contributing factor to therapy failure and development of chronic and recurrent infections. Several recent studies have suggested that this persistence is mediated primarily by (p)ppGpp, through its interactions with toxin-antitoxin modules and polyphosphates. In this study, we address whether these key players play a role in mycobacterial persistence against antibiotics. We targeted these specific pathways in Mycobacterium smegmatis by constructing deletion strains of (p)ppGpp synthetase/hydrolase (relA), polyphosphate kinases (ppk1 and ppk2), exopolyphosphatases (ppx1 and ppx2), and the lon protease. None of these mutant strains exhibited altered levels of persisters against isoniazid and ciprofloxacin, when compared with wild-type strain. Even under conditions in which the stringent response usually gets activated, these strains displayed wild-type persister levels. Interestingly, we also found that unlike Escherichia coli, maintaining M. smegmatis in exponential phase by repeated passaging does not eliminate persisters suggesting that at least against the antibiotics tested, stationary-phase dependent persisters (type I) are not the major contributors. Thus, our data demonstrate that multiple mechanisms of antibiotic persistence exist and that these vary widely among different bacterial species. © 2018 IUBMB Life, 70(9):836-844, 2018.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Guanosine Pentaphosphate/metabolism , Mycobacterium smegmatis/drug effects , Tuberculosis/drug therapy , Humans , Mycobacterium smegmatis/growth & development , Mycobacterium smegmatis/metabolism , Phosphotransferases (Phosphate Group Acceptor)/metabolism , Tuberculosis/metabolism , Tuberculosis/microbiology
2.
Antimicrob Agents Chemother ; 58(10): 5801-8, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25049243

ABSTRACT

A major obstacle in the process of discovery of drugs against Mycobacterium tuberculosis is its extremely slow growth rate and long generation time (∼20 to 24 h). Consequently, determination of MICs and minimum bactericidal concentrations (MBCs) of potential drug candidates using current methods requires 7 days (resazurin-based MIC assay [REMA]) and 1 month (CFU enumeration), respectively. We employed a synthetic luciferase operon optimized for expression in high-GC-content bacteria and adapted it for use in mycobacteria. Using luminescence-based readouts, we were able to determine the MICs and bactericidal activities of approved tuberculosis (TB) drugs, which correlated well with currently used methods. Although luminescence-based readouts have been used previously to determine the MICs and bactericidal activities of approved TB drugs, in this study we adapted this assay to carry out a pilot screen using a library of 1,114 compounds belonging to diverse chemical scaffolds. We found that MICs derived from a 3-day luminescence assay matched well with REMA-based MIC values. To determine the bactericidal potencies of compounds, a 1:10 dilution of the cultures from the MIC plate was carried out on day 7, and the bactericidal concentrations determined based on time to positivity in 2 weeks were found to be comparable with MBC values determined by the conventional CFU approach. Thus, the luminescent mycobacterium-based approach not only is very simple and inexpensive but also allowed us to generate the information in half the time required by conventional methods.


Subject(s)
Antitubercular Agents/pharmacology , Mycobacterium tuberculosis/drug effects , Luminescent Measurements , Microbial Sensitivity Tests , Reproducibility of Results
3.
Antimicrob Agents Chemother ; 56(7): 3610-4, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22526306

ABSTRACT

The genus Mycobacterium comprises slow-growing species with generation times ranging from hours to weeks. The protracted incubation time before colonies appear on solid culture medium can result in overgrowth by faster-growing microorganisms. To prevent contamination, the solid media used in laboratories and clinics for cultivation of mycobacteria contain the arylmethane compound malachite green, which has broad-spectrum antimicrobial activity. Malachite green has no impact on the plating efficiency of mycobacteria when cells are grown under normal conditions. However, we found that malachite green interfered with colony formation when bacteria were preexposed to antibiotics targeting cell wall biogenesis (isoniazid, ethionamide, ethambutol). This inhibitory effect of malachite green was not observed when bacteria were preexposed to antibiotics targeting cellular processes other than cell wall biogenesis (rifampin, moxifloxacin, streptomycin). Sputum specimens from tuberculosis patients are routinely evaluated on solid culture medium containing high concentrations of malachite green. This practice could lead to underestimation of bacterial loads and overestimation of chemotherapeutic efficacy.


Subject(s)
Antitubercular Agents/pharmacology , Mycobacterium/drug effects , Rosaniline Dyes/pharmacology , Ethambutol/pharmacology , Ethionamide/pharmacology , Humans , Isoniazid/pharmacology , Microbial Sensitivity Tests , Mycobacterium/metabolism , Reactive Nitrogen Species/metabolism , Sputum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...