Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
PLoS Comput Biol ; 20(6): e1012173, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900779

ABSTRACT

Interactive Jupyter Notebooks in combination with Conda environments can be used to generate FAIR (Findable, Accessible, Interoperable and Reusable/Reproducible) biomolecular simulation workflows. The interactive programming code accompanied by documentation and the possibility to inspect intermediate results with versatile graphical charts and data visualization is very helpful, especially in iterative processes, where parameters might be adjusted to a particular system of interest. This work presents a collection of FAIR notebooks covering various areas of the biomolecular simulation field, such as molecular dynamics (MD), protein-ligand docking, molecular checking/modeling, molecular interactions, and free energy perturbations. Workflows can be launched with myBinder or easily installed in a local system. The collection of notebooks aims to provide a compilation of demonstration workflows, and it is continuously updated and expanded with examples using new methodologies and tools.


Subject(s)
Computational Biology , Molecular Dynamics Simulation , Software , Workflow , Computational Biology/methods , Programming Languages , User-Computer Interface , Proteins/chemistry , Molecular Docking Simulation , Reproducibility of Results , Ligands
2.
Nucleic Acids Res ; 52(D1): D255-D264, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37971353

ABSTRACT

RegulonDB is a database that contains the most comprehensive corpus of knowledge of the regulation of transcription initiation of Escherichia coli K-12, including data from both classical molecular biology and high-throughput methodologies. Here, we describe biological advances since our last NAR paper of 2019. We explain the changes to satisfy FAIR requirements. We also present a full reconstruction of the RegulonDB computational infrastructure, which has significantly improved data storage, retrieval and accessibility and thus supports a more intuitive and user-friendly experience. The integration of graphical tools provides clear visual representations of genetic regulation data, facilitating data interpretation and knowledge integration. RegulonDB version 12.0 can be accessed at https://regulondb.ccg.unam.mx.


Subject(s)
Databases, Genetic , Escherichia coli K12 , Gene Expression Regulation, Bacterial , Computational Biology/methods , Escherichia coli K12/genetics , Internet , Transcription, Genetic
3.
Nucleic Acids Res ; 52(D1): D393-D403, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37953362

ABSTRACT

Molecular dynamics (MD) simulations are keeping computers busy around the world, generating a huge amount of data that is typically not open to the scientific community. Pioneering efforts to ensure the safety and reusability of MD data have been based on the use of simple databases providing a limited set of standard analyses on single-short trajectories. Despite their value, these databases do not offer a true solution for the current community of MD users, who want a flexible analysis pipeline and the possibility to address huge non-Markovian ensembles of large systems. Here we present a new paradigm for MD databases, resilient to large systems and long trajectories, and designed to be compatible with modern MD simulations. The data are offered to the community through a web-based graphical user interface (GUI), implemented with state-of-the-art technology, which incorporates system-specific analysis designed by the trajectory providers. A REST API and associated Jupyter Notebooks are integrated into the platform, allowing fully customized meta-analysis by final users. The new technology is illustrated using a collection of trajectories obtained by the community in the context of the effort to fight the COVID-19 pandemic. The server is accessible at https://bioexcel-cv19.bsc.es/#/. It is free and open to all users and there are no login requirements. It is also integrated into the simulations section of the BioExcel-MolSSI COVID-19 Molecular Structure and Therapeutics Hub: https://covid.molssi.org/simulations/ and is part of the MDDB effort (https://mddbr.eu).


Subject(s)
COVID-19 , Databases, Factual , Software , Humans , COVID-19/epidemiology , Molecular Dynamics Simulation , Pandemics , Meta-Analysis as Topic
5.
J Chem Inf Model ; 63(1): 321-334, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36576351

ABSTRACT

Mutations in the kinase domain of the epidermal growth factor receptor (EGFR) can be drivers of cancer and also trigger drug resistance in patients receiving chemotherapy treatment based on kinase inhibitors. A priori knowledge of the impact of EGFR variants on drug sensitivity would help to optimize chemotherapy and design new drugs that are effective against resistant variants before they emerge in clinical trials. To this end, we explored a variety of in silico methods, from sequence-based to "state-of-the-art" atomistic simulations. We did not find any sequence signal that can provide clues on when a drug-related mutation appears or the impact of such mutations on drug activity. Low-level simulation methods provide limited qualitative information on regions where mutations are likely to cause alterations in drug activity, and they can predict around 70% of the impact of mutations on drug efficiency. High-level simulations based on nonequilibrium alchemical free energy calculations show predictive power. The integration of these "state-of-the-art" methods into a workflow implementing an interface for parallel distribution of the calculations allows its automatic and high-throughput use, even for researchers with moderate experience in molecular simulations.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Drug Resistance/genetics , ErbB Receptors/metabolism , Mutation , Drug Resistance, Neoplasm/genetics
6.
Vaccines (Basel) ; 12(1)2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38250827

ABSTRACT

The COVID-19 pandemic has brought significant changes and advances in the field of vaccination, including the implementation and widespread use of encapsidated mRNA vaccines in general healthcare practice. Here, we present two new mRNAs expressing antigenic parts of the SARS-CoV-2 spike protein and provide data supporting their functionality. The first mRNA, called RBD-mRNA, encodes a trimeric form of the virus spike protein receptor binding domain (RBD). The other mRNA, termed T-mRNA, codes for the relevant HLA I and II spike epitopes. The two mRNAs (COVARNA mRNAs) were designed to be used for delivery to cells in combination, with the RBD-mRNA being the primary source of antigen and the T-mRNA working as an enhancer of immunogenicity by supporting CD4 and CD8 T-cell activation. This innovative approach substantially differs from other available mRNA vaccines, which are largely directed to antibody production by the entire spike protein. In this study, we first show that both mRNAs are functionally transfected into human antigen-presenting cells (APCs). We obtained peripheral blood mononuclear cell (PBMC) samples from three groups of voluntary donors differing in their immunity against SARS-CoV-2: non-infected (naïve), infected-recovered (convalescent), and vaccinated. Using an established method of co-culturing autologous human dendritic cells (hDCs) with T-cells, we detected proliferation and cytokine secretion, thus demonstrating the ability of the COVARNA mRNAs to activate T-cells in an antigen-specific way. Interestingly, important differences in the intensity of the response between the infected-recovered (convalescent) and vaccinated donors were observed, with the levels of T-cell proliferation and cytokine secretion (IFNγ, IL-2R, and IL-13) being higher in the vaccinated group. In summary, our data support the further study of these mRNAs as a combined approach for future use as a vaccine.

7.
Article in English | MEDLINE | ID: mdl-35935573

ABSTRACT

Exascale computing has been a dream for ages and is close to becoming a reality that will impact how molecular simulations are being performed, as well as the quantity and quality of the information derived for them. We review how the biomolecular simulations field is anticipating these new architectures, making emphasis on recent work from groups in the BioExcel Center of Excellence for High Performance Computing. We exemplified the power of these simulation strategies with the work done by the HPC simulation community to fight Covid-19 pandemics. This article is categorized under:Data Science > Computer Algorithms and ProgrammingData Science > Databases and Expert SystemsMolecular and Statistical Mechanics > Molecular Dynamics and Monte-Carlo Methods.

8.
Nucleic Acids Res ; 50(W1): W99-W107, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35639735

ABSTRACT

We present BioExcel Building Blocks Workflows, a web-based graphical user interface (GUI) offering access to a collection of transversal pre-configured biomolecular simulation workflows assembled with the BioExcel Building Blocks library. Available workflows include Molecular Dynamics setup, protein-ligand docking, trajectory analyses and small molecule parameterization. Workflows can be launched in the platform or downloaded to be run in the users' own premises. Remote launching of long executions to user's available High-Performance computers is possible, only requiring configuration of the appropriate access credentials. The web-based graphical user interface offers a high level of interactivity, with integration with the NGL viewer to visualize and check 3D structures, MDsrv to visualize trajectories, and Plotly to explore 2D plots. The server requires no login but is recommended to store the users' projects and manage sensitive information such as remote credentials. Private projects can be made public and shared with colleagues with a simple URL. The tool will help biomolecular simulation users with the most common and repetitive processes by means of a very intuitive and interactive graphical user interface. The server is accessible at https://mmb.irbbarcelona.org/biobb-wfs.


Subject(s)
Internet , Molecular Docking Simulation , Molecular Dynamics Simulation , Proteins , Software , User-Computer Interface , Workflow , Proteins/chemistry , Ligands
9.
Bioinformatics ; 38(12): 3302-3303, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35543460

ABSTRACT

MOTIVATION: The BioExcel Building Blocks (BioBB) library offers a broad collection of wrappers on top of common biomolecular simulation and bioinformatics tools. The possibility to access the library remotely and programmatically increases its usability, allowing individual and sporadic executions and enabling remote workflows. RESULTS: BioBB REST API extends and complements the BioBB library offering programmatic access to the collection of biomolecular simulation tools included in the BioExcel Building Blocks library. Molecular Dynamics setup, docking, structure modeling, free energy simulations and flexibility analyses are examples of functionalities included in the endpoints collection. All functionalities are accessible through standard REST API calls, voiding the need for tool installation. AVAILABILITY AND IMPLEMENTATION: All the information related to the BioBB REST API endpoints is accessible from https://mmb.irbbarcelona.org/biobb-api/. Links to extended documentation, including OpenAPI endpoints specification and examples, Read-The-Docs documentation and a complete workflow tutorial can be found in the Supplementary Table S1. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Molecular Dynamics Simulation , Software , Workflow , Gene Library
10.
J Chem Theory Comput ; 16(10): 6586-6597, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-32786900

ABSTRACT

Modern high-throughput structure-based drug discovery algorithms consider ligand flexibility, but typically with low accuracy, which results in a loss of performance in the derived models. Here we present the bioactive conformational ensemble (BCE) server and its associated database. The server creates conformational ensembles of drug-like ligands and stores them in the BCE database, where a variety of analyses are offered to the user. The workflow implemented in the BCE server combines enhanced sampling molecular dynamics with self-consistent reaction field quantum mechanics (SCRF/QM) calculations. The server automatizes all of the steps to transform one-dimensional (1D) or 2D representation of drugs into 3D molecules, which are then titrated, parametrized, hydrated, and optimized before being subjected to Hamiltonian replica-exchange (HREX) molecular dynamics simulations. Ensembles are collected and subjected to a clustering procedure to derive representative conformers, which are then analyzed at the SCRF/QM level of theory. All structural data are organized in a noSQL database accessible through a graphical interface and in a programmatic manner through a REST API. The server allows the user to define a private workspace and offers a deposition protocol as well as input files for "in house" calculations in those cases where confidentiality is a must. The database and the associated server are available at https://mmb.irbbarcelona.org/BCE.


Subject(s)
Drug Discovery , Pharmaceutical Preparations/chemistry , Databases, Factual , High-Throughput Screening Assays , Molecular Conformation , Molecular Dynamics Simulation , Quantum Theory
11.
Nucleic Acids Res ; 47(18): 9511-9523, 2019 10 10.
Article in English | MEDLINE | ID: mdl-31504766

ABSTRACT

We present Nucleosome Dynamics, a suite of programs integrated into a virtual research environment and created to define nucleosome architecture and dynamics from noisy experimental data. The package allows both the definition of nucleosome architectures and the detection of changes in nucleosomal organization due to changes in cellular conditions. Results are displayed in the context of genomic information thanks to different visualizers and browsers, allowing the user a holistic, multidimensional view of the genome/transcriptome. The package shows good performance for both locating equilibrium nucleosome architecture and nucleosome dynamics and provides abundant useful information in several test cases, where experimental data on nucleosome position (and for some cases expression level) have been collected for cells under different external conditions (cell cycle phase, yeast metabolic cycle progression, changes in nutrients or difference in MNase digestion level). Nucleosome Dynamics is a free software and is provided under several distribution models.


Subject(s)
Genomics/methods , Nucleosomes/genetics , Software , Cell Cycle/genetics , Chromatin Assembly and Disassembly/genetics , Genome/genetics , Nucleosomes/chemistry , Nucleosomes/ultrastructure , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Transcription Initiation Site , Transcriptome/genetics
12.
J Mol Biol ; 431(19): 3845-3859, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31325439

ABSTRACT

The rules governing sequence-specific DNA-protein recognition are under a long-standing debate regarding the prevalence of base versus shape readout mechanisms to explain sequence specificity and of the conformational selection versus induced fit binding paradigms to explain binding-related conformational changes in DNA. Using a combination of atomistic simulations on a subset of representative sequences and mesoscopic simulations at the protein-DNA interactome level, we demonstrate the prevalence of the shape readout model in determining sequence-specificity and of the conformational selection paradigm in defining the general mechanism for binding-related conformational changes in DNA. Our results suggest that the DNA uses a double mechanism to adapt its structure to the protein: it moves along the easiest deformation modes to approach the bioactive conformation, while final adjustments require localized rearrangements at the base-pair step and backbone level. Our study highlights the large impact of B-DNA dynamics in modulating DNA-protein binding.


Subject(s)
DNA, B-Form/chemistry , DNA, B-Form/metabolism , DNA-Binding Proteins/metabolism , Base Pairing , Base Sequence , Models, Molecular , Nucleic Acid Conformation , Protein Binding , Thermodynamics
13.
Stud Health Technol Inform ; 247: 621-625, 2018.
Article in English | MEDLINE | ID: mdl-29678035

ABSTRACT

Interoperable metadata is key for the management of genomic information. We propose a flexible approach that we contribute to the standardization by ISO/IEC of a new format for efficient and secure compressed storage and transmission of genomic information.


Subject(s)
Genomics , Metadata
14.
Arthritis Res Ther ; 19(1): 138, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28619073

ABSTRACT

BACKGROUND: Systemic lupus erythematosus (SLE) is a genetically complex rheumatic disease characterized by heterogeneous clinical manifestations of unknown etiology. Recent studies have suggested the existence of a genetic basis for SLE heterogeneity. The objective of the present study was to identify new genetic variation associated with the clinically relevant phenotypes in SLE. METHODS: A two-stage pathway-based approach was used to identify the genetic variation associated with the main clinical phenotypes in SLE. In the discovery stage, 482 SLE patients were genotyped using Illumina Human Quad610 microarrays. Association between 798 reference genetic pathways from the Molecular Signatures Database and 11 SLE phenotypes was tested using the set-based method implemented in PLINK software. Pathways significantly associated after multiple test correction were subsequently tested for replication in an independent cohort of 425 SLE patients. Using an in silico approach, we analyzed the functional effects of common SLE therapies on the replicated genetic pathways. The association of known SLE risk variants with the development of the clinical phenotypes was also analyzed. RESULTS: In the discovery stage, we found a significant association between the vascular endothelial growth factor (VEGF) pathway and oral ulceration (P value for false discovery rate (P FDR) < 0.05), and between the negative regulation signaling pathway of retinoic acid inducible gene-I/melanoma differentiation associated gene 5 and the production of antinuclear antibodies (P FDR < 0.05). In the replication stage, we validated the association between the VEGF pathway and oral ulceration. Therapies commonly used to treat mucocutaneous phenotypes in SLE were found to strongly influence VEGF pathway gene expression (P = 4.60e-4 to 5.38e-14). Analysis of known SLE risk loci identified a strong association between PTPN22 and the risk of hematologic disorder and with the development of antinuclear antibodies. CONCLUSIONS: The present study has identified VEGF genetic pathway association with the risk of oral ulceration in SLE. New therapies targeting the VEGF pathway could be more effective in reducing the severity of this phenotype. These findings represent a first step towards the understanding of the genetic basis of phenotype heterogeneity in SLE.


Subject(s)
Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/pathology , Oral Ulcer/genetics , Vascular Endothelial Growth Factor A/genetics , Adult , Female , Genetic Predisposition to Disease/genetics , Genetic Variation , Genome-Wide Association Study , Genotype , Humans , Lupus Erythematosus, Systemic/complications , Male , Phenotype
15.
Phys Chem Chem Phys ; 19(15): 9849-9861, 2017 Apr 12.
Article in English | MEDLINE | ID: mdl-28352893

ABSTRACT

Cation-π interactions of aromatic rings and positively charged groups are among the most important interactions in structural biology. The role and energetic characteristics of these interactions are well established. However, the occurrence of cation-π-cation interactions is an unexpected motif, which raises intriguing questions about its functional role in proteins. We present a statistical analysis of the occurrence, composition and geometrical preferences of cation-π-cation interactions identified in a set of non-redundant protein structures taken from the Protein Data Bank. Our results demonstrate that this structural motif is observed at a small, albeit non-negligible frequency in proteins, and suggest a preference to establish cation-π-cation motifs with Trp, followed by Tyr and Phe. Furthermore, we have found that cation-π-cation interactions tend to be highly conserved, which supports their structural or functional role. Finally, we have performed an energetic analysis of a representative subset of cation-π-cation complexes combining quantum-chemical and continuum solvation calculations. Our results point out that the protein environment can strongly screen the cation-cation repulsion, leading to an attractive interaction in 64% of the complexes analyzed. Together with the high degree of conservation observed, these results suggest a potential stabilizing role in the protein fold, as demonstrated recently for a miniature protein (Craven et al., J. Am. Chem. Soc. 2016, 138, 1543). From a computational point of view, the significant contribution of non-additive three-body terms challenges the suitability of standard additive force fields for describing cation-π-cation motifs in molecular simulations.


Subject(s)
Proteins/chemistry , Cations/chemistry , Humans , Metals/chemistry , Phenylalanine/chemistry , Protein Structure, Tertiary , Proteins/metabolism , Quantum Theory , Receptors, Somatotropin/chemistry , Receptors, Somatotropin/metabolism , Thermodynamics , Tryptophan/chemistry
16.
J Phys Chem B ; 121(15): 3636-3643, 2017 04 20.
Article in English | MEDLINE | ID: mdl-28059510

ABSTRACT

Extensive molecular dynamics (MD) simulations have been used to characterize the multiple roles of water in solvating different types of proteins under different environmental conditions. We analyzed a small set of proteins, representative of the most prevalent meta-folds under native conditions, in the presence of crowding agents, and at high temperature with or without high concentration of urea. We considered also a protein in the unfolded state as characterized by NMR and atomistic MD simulations. Our results outline the main characteristics of the hydration environment of proteins and illustrate the dramatic plasticity of water, and its chameleonic ability to stabilize proteins under a variety of conditions.


Subject(s)
Molecular Dynamics Simulation , Proteins/chemistry , Water/chemistry , Magnetic Resonance Spectroscopy , Protein Stability , Solubility , Temperature , Urea/chemistry
17.
Nucleic Acids Res ; 44(9): 4052-66, 2016 05 19.
Article in English | MEDLINE | ID: mdl-27084952

ABSTRACT

We present a systematic study of the long-timescale dynamics of the Drew-Dickerson dodecamer (DDD: d(CGCGAATTGCGC)2) a prototypical B-DNA duplex. Using our newly parameterized PARMBSC1 force field, we describe the conformational landscape of DDD in a variety of ionic environments from minimal salt to 2 M Na(+)Cl(-) or K(+)Cl(-) The sensitivity of the simulations to the use of different solvent and ion models is analyzed in detail using multi-microsecond simulations. Finally, an extended (10 µs) simulation is used to characterize slow and infrequent conformational changes in DDD, leading to the identification of previously uncharacterized conformational states of this duplex which can explain biologically relevant conformational transitions. With a total of more than 43 µs of unrestrained molecular dynamics simulation, this study is the most extensive investigation of the dynamics of the most prototypical DNA duplex.


Subject(s)
DNA, B-Form/chemistry , DNA, B-Form/ultrastructure , Molecular Dynamics Simulation , Nucleic Acid Conformation , Models, Molecular , Potassium Chloride/chemistry , Sodium Chloride/chemistry
18.
Rheumatology (Oxford) ; 55(6): 1106-11, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26983453

ABSTRACT

OBJECTIVE: RA patients with serum ACPA have a strong and specific genetic background. The objective of the study was to identify new susceptibility genes for ACPA-positive RA using a genome-wide association approach. METHODS: A total of 924 ACPA-positive RA patients with joint damage in hands and/or feet, and 1524 healthy controls were genotyped in 582 591 single-nucleotide polymorphisms (SNPs) in the discovery phase. In the validation phase, the most significant SNPs in the genome-wide association study representing new candidate loci for RA were tested in an independent cohort of 863 ACPA-positive patients with joint damage and 1152 healthy controls. All individuals from the discovery and validation cohorts were Caucasian and of Southern European ancestry. RESULTS: In the discovery phase, 60 loci not previously associated with RA risk showed evidence for association at P < 5×10(-4) and were tested for replication in the validation cohort. A total of 12 loci were replicated at the nominal level (P < 0.05, same direction of effect as in the discovery phase). When combining the discovery and validation cohorts, an intronic SNP in the Solute Carrier family 8 gene (SLC8A3) was found to be associated with ACPA-positive RA at a genome-wide level of significance RA [odds ratio (95% CI): 1.42 (1.25, 1.6), Pcombined = 3.19×10(-8)]. CONCLUSIONS: SLC8A3 was identified as a new risk locus for ACPA-positive RA. This study demonstrates the advantage of analysing relevant subsets of RA patients to identify new genetic risk variants.


Subject(s)
Arthritis, Rheumatoid/genetics , Autoantibodies/blood , Genetic Loci , Genetic Predisposition to Disease , Sodium-Calcium Exchanger/genetics , Adult , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/immunology , Autoantibodies/immunology , Case-Control Studies , Female , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Peptides, Cyclic/immunology , Polymorphism, Single Nucleotide , Risk Factors , Sodium-Calcium Exchanger/blood , White People/genetics
19.
J Invest Dermatol ; 136(3): 593-602, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26743605

ABSTRACT

Psoriasis is a chronic inflammatory disease with a complex genetic architecture. To date, the psoriasis heritability is only partially explained. However, there is increasing evidence that the missing heritability in psoriasis could be explained by multiple genetic variants of low effect size from common genetic pathways. The objective of this study was to identify new genetic variation associated with psoriasis risk at the pathway level. We genotyped 598,258 single nucleotide polymorphisms in a discovery cohort of 2,281 case-control individuals from Spain. We performed a genome-wide pathway analysis using 1,053 reference biological pathways. A total of 14 genetic pathways (PFDR ≤ 2.55 × 10(-2)) were found to be significantly associated with psoriasis risk. Using an independent validation cohort of 7,353 individuals from the UK, a total of 6 genetic pathways were significantly replicated (PFDR ≤ 3.46 × 10(-2)). We found genetic pathways that had not been previously associated with psoriasis risk such as retinol metabolism (Pcombined = 1.84 × 10(-4)), the transport of inorganic ions and amino acids (Pcombined = 1.57 × 10(-7)), and post-translational protein modification (Pcombined = 1.57 × 10(-7)). In the latter pathway, MGAT5 showed a strong network centrality, and its association with psoriasis risk was further validated in an additional case-control cohort of 3,429 individuals (P < 0.05). These findings provide insights into the biological mechanisms associated with psoriasis susceptibility.


Subject(s)
Genetic Predisposition to Disease/epidemiology , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide/genetics , Psoriasis/epidemiology , Psoriasis/genetics , Adult , Case-Control Studies , Female , Genetic Variation , Genotype , Humans , Male , Middle Aged , Prevalence , Psoriasis/physiopathology , Reference Values , Risk Assessment , Spain/epidemiology
20.
Nat Methods ; 13(1): 55-8, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26569599

ABSTRACT

We present parmbsc1, a force field for DNA atomistic simulation, which has been parameterized from high-level quantum mechanical data and tested for nearly 100 systems (representing a total simulation time of ∼ 140 µs) covering most of DNA structural space. Parmbsc1 provides high-quality results in diverse systems. Parameters and trajectories are available at http://mmb.irbbarcelona.org/ParmBSC1/.


Subject(s)
DNA/chemistry , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...