Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Physiol ; 106(3): 634-652, 2021 03.
Article in English | MEDLINE | ID: mdl-33245579

ABSTRACT

Laser-Doppler flowmetry (LDF) is commonly used to assess cutaneous vasodilatation responses, but its reliability (i.e. consistency) during whole-body passive heating is unknown. We therefore assessed the reliability of LDF-derived indices of cutaneous vasodilatation during incremental whole-body heating. Fourteen young men (age: 24 (SD 5) years) completed three identical trials, each separated by 1 week. During each trial, a water-perfused suit was used to raise and clamp oesophageal temperature at 0.6°C (low-heat strain; LHS) and 1.2°C (moderate-heat strain; MHS) above baseline. LDF-derived skin blood flow (SkBF) was measured at three dorsal mid-forearm sites, with local skin temperature clamped at 34°C. Data were expressed as absolute cutaneous vascular conductance (CVCabs ; SkBF/mean arterial pressure) and normalised to maximal conductance (%CVCmax ) achieved via simultaneous local skin heating to 44°C and increasing oesophageal temperature to 1.8°C above baseline. Between-day reliability was characterised as measurement consistency across trials, while within-day reliability was characterised as measurement consistency across adjacent skin sites during each trial. Between- and within-day absolute reliability (coefficient of variation) generally improved with increasing heat strain, changing from poor (>25%) at baseline, poor-to-moderate (15-34%) at LHS, and moderate (10-25%) at MHS. Generally, these estimates were more consistent when expressed as %CVCmax . Conversely, relative reliability was mostly acceptable (intraclass correlation coefficient ≥0.70) during LHS and when data were expressed as CVCabs . These findings indicate that the consistency of LDF-derived CVC estimates during heat stress depends on the level of heat strain and method of data expression, which should be considered when designing and interpreting experiments.


Subject(s)
Forearm , Vasodilation , Adult , Heating , Hot Temperature , Humans , Laser-Doppler Flowmetry , Male , Regional Blood Flow/physiology , Reproducibility of Results , Skin/blood supply , Young Adult
2.
Temperature (Austin) ; 8(1): 80-89, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-33553507

ABSTRACT

The purpose of this study was to assess the heat strain experienced by children during unstructured physical activity outdoors in a temperate continental summer climate. Eighteen children (7 girls, 12.1 ± 1.7 years) performed up to 4 h of outdoor free-play (duration: 218 ± 33 min; air temperature of 24.5 ± 3.9°C and relative humidity of 66.2 ± 9.2%). Urine specific gravity (USG) was measured pre- and post-free-play, while body core temperature (Tco, ingestible pill) and heart rate (HR) were measured continuously. Physiological strain index (PSI) was calculated from Tco and HR (scale: 0 (none) to 10 (very high)). Activity levels were categorized as rest, light, moderate, and vigorous based on the metabolic equivalent of task, estimated from video analysis. Most children were euhydrated pre (78%, USG ≤ 1.020), but not post-free-play (28%, USG ≤ 1.020). Mean and peak Tco, HR, and PSI responses were 37.8 ± 0.3°C and 38.4 ± 0.3°C, 133 ± 14 bpm and 180 ± 12 bpm, and 4.7 ± 1.1 (low) and 7.4 ± 1.0 (high), respectively. All children reached peak Tco≥38.0°C, with seven ≥38.5°C, and the highest at 38.9°C. The children spent 58 ± 15% of free-play engaged in moderate-to-vigorous intensity physical activity. During free-play, all of the children performed moderate-to-vigorous intensity physical activity, which was associated with pronounced elevations in heat strain.

SELECTION OF CITATIONS
SEARCH DETAIL
...