Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Radiat Res ; 54 Suppl 1: i82-90, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23824132

ABSTRACT

We propose a patient-specific planning target volume (PTV) to deal with interfractional variations, and test its feasibility in a retrospective treatment-planning study. Instead of using one planning image only, multiple scans are taken on different days. The target and organs at risk (OARs) are delineated on each images. The proposed PTV is generated from a union of those target contours on the planning images, excluding voxels of the OARs, and is denoted the PTV 'GP-OAR' (global prostate-organs at risk). The study is performed using 'plan of the day' adaptive workflow, which selects a daily plan from a library of plans based on a similarity comparison between the daily scan and planning images. The daily plans optimized for GP-OAR volumes are compared with those optimized for PTVs generated from a single prostate contour (PTV SP). Four CT serials of prostate cancer patient datasets are included in the test, and in total 28 fractions are simulated. The results show that the daily chosen GP-OAR plans provide excellent target coverage, with V95 values of the prostate mostly > 95%. In addition, dose delivered to the OARs as calculated from applying daily chosen GP-OAR plans is slightly increased but comparable to that calculated from applying daily SP plans. In general, the PTV GP-OARs are able to cover possible target variations while keeping dose delivered to the OARs at a similar level to that of the PTV SPs.


Subject(s)
Heavy Ion Radiotherapy/methods , Prostatic Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Carbon/therapeutic use , Humans , Ions , Male , Motion , Organs at Risk , Retrospective Studies , Tomography, X-Ray Computed
2.
Phys Med Biol ; 58(4): 1013-25, 2013 Feb 21.
Article in English | MEDLINE | ID: mdl-23363558

ABSTRACT

We propose a plan adaptation method for fast treatment plan generation in scanned ion beam therapy. Analysis of optimized treatment plans with carbon ions indicates that the particle number modulation of consecutive rasterspots in depth shows little variation throughout target volumes with convex shape. Thus, we extract a depth-modulation curve (DMC) from existing reference plans and adapt it for creation of new plans in similar treatment situations. The proposed method is tested with seven CT serials of prostate patients and three digital phantom datasets generated with the MATLAB code. Plans are generated with a treatment planning software developed by GSI using single-field uniform dose optimization for all the CT datasets to serve as reference plans and 'gold standard'. The adapted plans are generated based on the DMC derived from the reference plans of the same patient (intra-patient), different patient (inter-patient) and phantoms (phantom-patient). They are compared with the reference plans and a re-positioning strategy. Generally, in 1 min on a standard PC, either a physical plan or a biological plan can be generated with the adaptive method provided that the new target contour is available. In all the cases, the V95 values of the adapted plans can achieve 97% for either physical or biological plans. V107 is always 0 indicating no overdosage, and target dose homogeneity is above 0.98 in all cases. The dose received by the organs at risk is comparable to the optimized plans. The plan adaptation method has the potential for on-line adaptation to deal with inter-fractional motion, as well as fast off-line treatment planning, with either the prescribed physical dose or the RBE-weighted dose.


Subject(s)
Ions/therapeutic use , Prostatic Neoplasms/pathology , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Carbon/chemistry , Humans , Male , Models, Statistical , Phantoms, Imaging , Prostate/diagnostic imaging , Prostatic Neoplasms/diagnostic imaging , Radiotherapy Dosage , Reproducibility of Results , Retrospective Studies , Software , Tomography, X-Ray Computed/methods
3.
Radiat Oncol ; 5: 61, 2010 Jun 30.
Article in English | MEDLINE | ID: mdl-20591160

ABSTRACT

BACKGROUND: Scanned ion beam therapy of intra-fractionally moving tumors requires motion mitigation. GSI proposed beam tracking and performed several experimental studies to analyse the dosimetric precision of the system for scanned carbon beams. METHODS: A beam tracking system has been developed and integrated in the scanned carbon ion beam therapy unit at GSI. The system adapts pencil beam positions and beam energy according to target motion. Motion compensation performance of the beam tracking system was assessed by measurements with radiographic films, a range telescope, a 3D array of 24 ionization chambers, and cell samples for biological dosimetry. Measurements were performed for stationary detectors and moving detectors using the beam tracking system. RESULTS: All detector systems showed comparable data for a moving setup when using beam tracking and the corresponding stationary setup. Within the target volume the mean relative differences of ionization chamber measurements were 0.3% (1.5% standard deviation, 3.7% maximum). Film responses demonstrated preserved lateral dose gradients. Measurements with the range telescope showed agreement of Bragg peak depth under motion induced range variations. Cell survival experiments showed a mean relative difference of -5% (-3%) between measurements and calculations within the target volume for beam tracking (stationary) measurements. CONCLUSIONS: The beam tracking system has been successfully integrated. Full functionality has been validated dosimetrically in experiments with several detector types including biological cell systems.


Subject(s)
Radiometry/methods , Animals , CHO Cells , Carbon , Cricetinae , Cricetulus , Ions , Motion , Radiometry/instrumentation , Radiotherapy Dosage , Relative Biological Effectiveness
4.
Phys Med Biol ; 54(16): 4849-62, 2009 Aug 21.
Article in English | MEDLINE | ID: mdl-19636085

ABSTRACT

The technical performance of an integrated three-dimensional carbon ion pencil beam tracking system that was developed at GSI was investigated in phantom studies. Aim of the beam tracking system is to accurately treat tumours that are subject to respiratory motion with scanned ion beams. The current system provides real-time control of ion pencil beams to track a moving target laterally using the scanning magnets and longitudinally with a dedicated range shifter. The system response time was deduced to be approximately 1 ms for lateral beam tracking. The range shifter response time has been measured for various range shift amounts. A value of 16 +/- 2 ms was achieved for a water equivalent shift of 5 mm. An additional communication delay of 11 +/- 2 ms was taken into account in the beam tracking process via motion prediction. Accuracy of the lateral beam tracking was measured with a multi-wire position detector to < or =0.16 mm standard deviation. Longitudinal beam tracking accuracy was parameterized based on measured responses of the range shifter and required time durations to maintain a specific particle range. For example, 5 mm water equivalence (WE) longitudinal beam tracking results in accuracy of 1.08 and 0.48 mm WE in root mean square for time windows of 10 and 50 ms, respectively.


Subject(s)
Movement , Radiotherapy/methods , Phantoms, Imaging , Time Factors
5.
Int J Radiat Oncol Biol Phys ; 73(4): 1270-5, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19251099

ABSTRACT

PURPOSE: To demonstrate mitigation of the interplay effects of scanned particle beams and residual target motion within a gating window by increased overlap of pencil beams. METHODS AND MATERIALS: Lateral overlap was increased by increasing the pencil beam widths or by decreasing the distance between the pencil beams (scan grid). Longitudinal overlap was increased by reducing the distance between iso-range slices. For scanned carbon ion beams, simulation studies were performed and validated experimentally to determine the required parameters for different residual motion characteristics. The dose distributions were characterized by the maximal local deviations representing local over- and underdosage. RESULTS: For residual lateral motion, the local deviations were <5% for 2, 4, and 7 mm residual motion within the gating window for a 2-mm scan grid and pencil beams of 10, 14, and 18 mm full width at half maximum, respectively. Decreasing the iso-range slice distance from 3 mm to 1 mm effectively mitigated

Subject(s)
Movement , Radiotherapy/methods , Particle Accelerators , Radiotherapy Dosage , X-Ray Film
SELECTION OF CITATIONS
SEARCH DETAIL
...