Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ASAIO J ; 53(1): 23-31, 2007.
Article in English | MEDLINE | ID: mdl-17237645

ABSTRACT

A miniature Maglev blood pump based on magnetically levitated bearingless technology is being developed and optimized for pediatric patients. We performed impeller optimization by characterizing the hemodynamic and hemocompatibility performances using a combined computational and experimental approach. Both three-dimensional flow features and hemolytic characteristics were analyzed using computational fluid dynamics (CFD) modeling. Hydraulic pump performances and hemolysis levels of three different impeller designs were quantified and compared numerically. Two pump prototypes were constructed from the two impeller designs and experimentally tested. Comparison of CFD predictions with experimental results showed good agreement. The optimized impeller remarkably increased overall pump hydraulic output by more than 50% over the initial design. The CFD simulation demonstrated a clean and streamlined flow field in the main flow path. The numerical results by hemolysis model indicated no significant high shear stress regions. Through the use of CFD analysis and bench-top testing, the small pediatric pump was optimized to achieve a low level of blood damage and improved hydraulic performance and efficiency. The Maglev pediatric blood pump is innovative due to its small size, very low priming volume, excellent hemodynamic and hematologic performance, and elimination of seal-related and bearing-related failures due to adoption of magnetically levitated bearingless motor technology, making it ideal for pediatric applications.


Subject(s)
Equipment Design , Heart-Assist Devices , Miniaturization , Child , Hemolysis , Humans , Pressure
2.
Artif Organs ; 28(10): 874-80, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15384992

ABSTRACT

The fluid dynamics of the Thoratec HeartMate III (Thoratec Corp., Pleasanton, CA, U.S.A.) left ventricular assist device are analyzed over a range of physiological operating conditions. The HeartMate III is a centrifugal flow pump with a magnetically suspended rotor. The complete pump was analyzed using computational fluid dynamics (CFD) analysis and experimental particle imaging flow visualization (PIFV). A comparison of CFD predictions to experimental imaging shows good agreement. Both CFD and experimental PIFV confirmed well-behaved flow fields in the main components of the HeartMate III pump: inlet, volute, and outlet. The HeartMate III is shown to exhibit clean flow features and good surface washing across its entire operating range.


Subject(s)
Assisted Circulation/instrumentation , Biomedical Engineering , Heart-Assist Devices , Blood Circulation , Blood Flow Velocity , Computer Simulation , Heart, Artificial , Humans
3.
Artif Organs ; 26(11): 939-42, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12406147

ABSTRACT

The promise of expanded indications for left ventricular assist devices in the future for very long-term applications (10+ years) prompts sealed (i.e. fully implanted) systems and less-obtrusive and more reliable implanted components than their external counterparts in percutaneous configurations. Furthermore, sealed systems increase the fraction of total power losses dissipated intracorporeally, a disadvantage that must be carefully managed. We set out to incorporate the motor drive and levitation control electronics within the HeartMate III blood pump without substantially increasing the pump's size. Electronics based on a rigid-flex satellite printed circuit board (PCB) arrangement that could be folded into a very compact, dense package were designed, fabricated, and tested. The pump's lower housing was redesigned to accommodate these PCBs without increasing any dimension of the pump except the height, and that by only 5 mm. The interconnect cable was reduced from 22 wires to 10 (two fully redundant sets of 5). An ongoing test of the assembled pump in vitro has demonstrated no problems in 5 months. In addition, a 20-day in vivo test showed only 1 degrees C temperature rises, equivalent to pumps without incorporated electronics at similar operating conditions.


Subject(s)
Cardiovascular Diseases/therapy , Electronics, Medical/instrumentation , Heart-Assist Devices , Animals , Blood Circulation/physiology , Body Temperature/physiology , Cardiovascular Diseases/physiopathology , Cattle , Equipment Design , Humans , In Vitro Techniques , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...