Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters











Publication year range
1.
J Fish Biol ; 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39162132

ABSTRACT

Triploidization influences various biological characteristics of fish, which is associated with reductions in the number of multiple cell types in different tissues/organs. Our behavioral analyses revealed that triploid Pacific bluefin tuna (Thunnus orientalis) larvae exhibit lower sensitivity to light compared to diploids. Furthermore, histological analyses revealed a reduction in the number of ganglion cells and an increase in their size in the retinas of triploid T. orientalis larvae. Our findings provide the first evidence indicating that triploidization reduces sensory perception during the larval stage of fish.

2.
Front Endocrinol (Lausanne) ; 14: 1201250, 2023.
Article in English | MEDLINE | ID: mdl-37693354

ABSTRACT

The gonadotropins (Gth), follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh), play central roles in gametogenesis in vertebrates. However, available information on their differential actions in teleost, especially in vivo, is insufficient. In this study, we established stable CHO-DG44 cell lines expressing long-lasting recombinant Japanese eel Fsh and Lh with extra O-glycosylation sites (Fsh-hCTP and Lh-hCTP), which were produced in abundance. Immature female eels received weekly intraperitoneal injections of Gths. Fsh-hCTP induced the entire ovarian development by 8 weeks from the beginning of injection; thus, the ovaries of most fish were at the migratory nucleus stage while the same stage was observed in eels after 4 weeks in the Lh-hCTP-treated group. In contrast, all pretreated and saline-injected eels were in the pre-vitellogenic stage. Gonadosomatic indices in the Fsh-hCTP-treated group were significantly higher than those in the Lh-hCTP group at the migratory nucleus stage because of the significantly higher frequency of advanced ovarian follicles. Ovarian mRNA levels of genes related to E2 production (cyp11a1, cyp17a1, cyp19a1, hsd3b, fshr, and lhr) were measured using real-time quantitative reverse transcription-polymerase chain reaction (RT-PCR). All genes were induced by both Fsh-hCTP and Lh-hCTP, with a peak at either the mid- or late vitellogenic stages. Transcript abundance of cyp19a1 and fshr in the Lh-hCTP group were significantly higher than those in the Fsh-hCTP group, whereas no difference in the expression of other genes was observed between the groups. Fluctuations in serum levels of sex steroid hormones (estradiol-17ß, 11-ketotestosterone, and testosterone) in female eels were comparable in the Fsh-hCTP and Lh-hCTP groups, thus increasing toward the maturational phase. Furthermore, the fecundity of the eels induced to mature by Fsh-hCTP was significantly higher than that induced by Lh-hCTP. These findings indicate that Fsh and Lh can induce ovarian development in distinctively different modes in the Japanese eel.


Subject(s)
Follicle Stimulating Hormone, Human , Luteinizing Hormone , Female , Animals , Cricetinae , CHO Cells , Eels/genetics , Gametogenesis
3.
Sci Rep ; 13(1): 13867, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37620512

ABSTRACT

Tunas (genus Thunnus) are one of the most ecologically and commercially important fish worldwide. To establish a biological basis for reproduction in this globally essential species, we have recently studied crucial reproductive aspects of the Pacific bluefin tuna (T. orientalis; PBT), as a model of tuna species, based on our closed-cycle aquaculture technology. In this study, we clarified the global expression profile of the genes regulating gonadal sex differentiation in PBT, as this developmental process is vital to sexual reproduction. Based on the results of our comparative (RNA-sequencing) and temporal (qRT-PCR) transcriptome analyses using the updated genome dataset, we propose the molecular mechanisms of gonadal sex differentiation in PBT. In female gonads, foxl2 and cyp19a1a (coding aromatase) are expressed at the onset of sex differentiation. Active aromatase-mediated estrogen biosynthesis, which includes positive regulation of cyp19a1a expression by Foxl2, induces ovarian differentiation. By contrast, dmrt1 and gsdf are upregulated in differentiating male gonads lacking active estrogen synthesis. Dmrt1 and Gsdf would mainly promote testicular differentiation. Furthermore, androgen biosynthesis is upregulated in differentiating male gonad. Endogenous androgens may also be vital to testicular differentiation. This study provides the first comprehensive data clarifying the molecular basis for gonadal sex differentiation in tunas.


Subject(s)
Aromatase , Tuna , Female , Male , Animals , Tuna/genetics , Aromatase/genetics , Transcriptome , Sex Differentiation/genetics , Gonads , Estrogens
4.
Sci Rep ; 13(1): 3190, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36823281

ABSTRACT

Genome editing is a technology that can remarkably accelerate crop and animal breeding via artificial induction of desired traits with high accuracy. This study aimed to develop a chub mackerel variety with reduced aggression using an experimental system that enables efficient egg collection and genome editing. Sexual maturation and control of spawning season and time were technologically facilitated by controlling the photoperiod and water temperature of the rearing tank. In addition, appropriate low-temperature treatment conditions for delaying cleavage, shape of the glass capillary, and injection site were examined in detail in order to develop an efficient and robust microinjection system for the study. An arginine vasotocin receptor V1a2 (V1a2) knockout (KO) strain of chub mackerel was developed in order to reduce the frequency of cannibalistic behavior at the fry stage. Video data analysis using bioimage informatics quantified the frequency of aggressive behavior, indicating a significant 46% reduction (P = 0.0229) in the frequency of cannibalistic behavior than in wild type. Furthermore, in the V1a2 KO strain, the frequency of collisions with the wall and oxygen consumption also decreased. Overall, the manageable and calm phenotype reported here can potentially contribute to the development of a stable and sustainable marine product.


Subject(s)
Cyprinidae , Perciformes , Animals , Vasotocin/genetics , Gene Editing , Perciformes/genetics , Aggression , Cyprinidae/genetics
5.
Int J Genomics ; 2021: 7226353, 2021.
Article in English | MEDLINE | ID: mdl-34957293

ABSTRACT

Fish species have a variety of sex determination systems. Tunas (genus Thunnus) have an XY genetic sex determination system. However, the Y chromosome or responsible locus has not yet been identified in males. In a previous study, a female genome of Pacific bluefin tuna (T. orientalis) was sequenced, and candidates for sex-associated DNA polymorphisms were identified by a genome-wide association study using resequencing data. In the present study, we sequenced a male genome of Pacific bluefin tuna by long-read and linked-read sequencing technologies and explored male-specific loci through a comparison with the female genome. As a result, we found a unique region carrying the male-specific haplotype, where a homolog of estrogen sulfotransferase gene was predicted to be encoded. The genome-wide mapping of previously resequenced data indicated that, among the functionally annotated genes, only this gene, named sult1st6y, was paternally inherited in the males of Pacific bluefin tuna. We reviewed the RNA-seq data of southern bluefin tuna (T. maccoyii) in the public database and found that sult1st6y of southern bluefin tuna was expressed in all male testes, but absent or suppressed in the female ovary. Since estrogen sulfotransferase is responsible for the inactivation of estrogens, it is reasonable to assume that the expression of sult1st6y in gonad cells may inhibit female development, thereby inducing the individuals to become males. Thus, our results raise a promising hypothesis that sult1st6y is the sex determination gene in Thunnus fishes or at least functions at a crucial point in the sex-differentiation cascade.

6.
Theriogenology ; 173: 56-63, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34333168

ABSTRACT

Pacific bluefin tuna (PBT), Thunnus orientalis, is one of the most important species for aquaculture in Japan. Recently, the reduction in muscle fat content associated with sexual maturation in farmed PBT has become a serious problem. To develop technologies for inducing sterility, detailed and reliable data on gonadal development in PBT are needed. Here, we demonstrated the process of gonadal sex differentiation, and of early ovarian and testicular development during the immature stages in PBT. Gonadal sex differentiation was first characterized by the formation of the ovarian cavity in female and of the efferent ducts in male 57 days post hatching (dph). The gonads then differentiated into ovaries or testes according to the genotypic sex until 83 dph. During this period, primordial germ cells, oogonia, and type-A spermatogonia were solitarily distributed in the gonads, and the number of germ cells did not differ between sexes. After gonadal sex differentiation, gonads of PBTs developed in a sexually dimorphic manner: proliferation and differentiation of germ cells occurred earlier in the ovaries than in the testes. The oogonia in ovaries formed cysts at 185 dph, but the type-A spermatogonia were solitarily distributed in testes at this stage, and cysts of type-A spermatogonia were first observed at 247 dph. Moreover, the oogonia entered meiosis and differentiated into chromatin-nucleolus stage oocytes until 247 dph, and subsequently into peri-nucleolus stage oocytes until 285 dph, whereas the type-A spermatogonia differentiated into type-B spermatogonia, spermatocytes, spermatids, and spermatozoa from 446 dph onwards. We believe the results of this study provide the necessary basis for future studies on sterile PBT production.


Subject(s)
Sex Differentiation , Testis , Animals , Female , Gonads , Male , Ovary , Spermatogonia , Tuna
7.
Gen Comp Endocrinol ; 306: 113731, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33539901

ABSTRACT

Gonadotropins (Gths), follicle-stimulating hormone (Fsh), and luteinizing hormone (Lh) play central roles in the reproductive biology of vertebrates. In this study, recombinant single-chain Japanese eel Gths (rGth: rFsh and rLh), and recombinant chimeric Gths (rGth-hCTPs: rFsh-hCTP and rLh-hCTP; rGth-eCTPs: rFsh-eCTP and rLh-eCTP) with an extra O-glycosylation site (either a C-terminal peptide of human (hCTP) or equine (eCTP) chorionic gonadotropin), which are known to prolong the half-life of glycoprotein were produced in HEK293 cells and highly purified. Lectin blot analyses demonstrated that all these recombinant Gths contained N-glycans of the high mannose and complex types. In contrast, only rGth-hCTPs and rGth-eCTPs possessed highly sialylated O-linked oligosaccharides. Further analyses of glycans by liquid chromatography-mass spectrometry suggested that the species, amount, and degree of sialylation of N-glycans were comparable among recombinant Fshs and recombinant Lhs, while the amount of O-glycans with sialic acids in rGth-hCTPs was higher than that in the corresponding rGth-eCTPs. The serum levels of recombinant Gths in male eels significantly increased 12-24 h after a single injection of the Gths. The levels of rGth-hCTPs tended to be higher than those of the corresponding rGths and rGth-eCTPs throughout the experimental period, coinciding with the serum fluctuations of 11-ketotestosterone (11KT). The long-term treatment of male eels with these recombinant Gths also revealed the superiority of rGth-hCTPs in assisted reproduction; thus, the serum levels of 11KT and gonadosomatic indices in eels treated with rGth-hCTPs were higher than those in eels treated with the corresponding rGths and rGth-eCTPs. The induction of the entire process of spermatogenesis was only histologically observed in rGth-hCTPs-treated eels. These findings strongly suggest that hCTP enhances the in vivo biological activity of recombinant Japanese eel Gths due to the high abundance of O-linked glycans with sialylated antennae.


Subject(s)
Anguilla , Luteinizing Hormone , Animals , Chorionic Gonadotropin/pharmacology , Follicle Stimulating Hormone , HEK293 Cells , Horses , Humans , Male , Recombinant Proteins
8.
Sci Rep ; 11(1): 6, 2021 01 12.
Article in English | MEDLINE | ID: mdl-33436861

ABSTRACT

Closed-cycle aquaculture using hatchery produced seed stocks is vital to the sustainability of endangered species such as Pacific bluefin tuna (Thunnus orientalis) because this aquaculture system does not depend on aquaculture seeds collected from the wild. High egg quality promotes efficient aquaculture production by improving hatch rates and subsequent growth and survival of hatched larvae. In this study, we investigate the possibility of a simple, low-cost, and accurate egg quality prediction system based only on photographic images using deep neural networks. We photographed individual eggs immediately after spawning and assessed their qualities, i.e., whether they hatched normally and how many days larvae survived without feeding. The proposed system predicted normally hatching eggs with higher accuracy than human experts. It was also successful in predicting which eggs would produce longer-surviving larvae. We also analyzed the image aspects that contributed to the prediction to discover important egg features. Our results suggest the applicability of deep learning techniques to efficient egg quality prediction, and analysis of early developmental stages of development.


Subject(s)
Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Ovum/cytology , Tuna , Animals , Aquaculture/methods , Humans , Larva/cytology , Quality Control
9.
Zool Stud ; 60: e61, 2021.
Article in English | MEDLINE | ID: mdl-35665081

ABSTRACT

The post ovulatory follicle (POF) is an important and reliable tissue structure used to investigate the spawning history in teleost fish. Fresh POFs shortly after spawning are comprised of cellular (follicular cells) and acellular (basement membrane and fibrils such as elastic fibers) components. The cellular components are quickly disintegrated by means of apoptosis, while the acellular components persist for a longer period. Since cellular components are well visualized by conventional hematoxylin-eosin (HE) staining but acellular components are not stained well, old POFs that have lost cellular components are difficult to identify. In this study, periodic acid-Schiff and Victoria blue staining, which can distinctly visualize acellular POF components, were applied to the ovarian tissues of Japanese eel (Anguilla japonica) (n = 9) captured from June to August of 2008, 2009, and 2013 at the southern West Mariana Ridge, a spawning area for Japanese eels. Only new POFs were observed in seven females caught in June, and these females had ovaries with early-to mid-vitellogenic stage oocytes. Both fresh and old POFs were observed in a female caught in July, and only mid-vitellogenic stage oocytes were observed. Only old POFs and no vitellogenic stage oocyte were observed in a female caught in August. A progressive decrease in muscle lipid content, gonad somatic index, and condition factors was observed from June to August. Thus, the female Japanese eel can spawn at least twice or three times at most during spawning season, depending on energy reserve.

10.
Gen Comp Endocrinol ; 305: 113685, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33271196

ABSTRACT

The synthesis of 11-ketotestosterone (11KT) and estradiol-17ß (E2), which play important roles in the regulation of gametogenesis in teleost fishes, is catalyzed by several steroidogenic enzymes. In particular, 17ß-hydroxysteroid dehydrogenases (Hsd17bs) with 17-ketosteroid reducing activity (17KSR activity) are essential enzymes in the formation of these sex steroid hormones in the gonads and other tissues. Retinol dehydrogenase 11 (RDH11) has been suggested to be a novel tentative HSD17B (HSD17B15) in humans for a decade, however no definitive proof has been provided yet. In this study, three cDNAs related to human RDH11 were isolated from Japanese eel testis and characterized. Sequence similarity and phylogenetic analyses revealed their close relationship to human rdh11 and rdh12 gene products and they were designated as rdh11/12-like 1, rdh11/12-like 2, and rdh11/12-like 3. Three recombinant Rdh11/12-like proteins expressed in HEK293T cells catalyzed the transformation of estrone into E2 and androstenedione into testosterone. Only Rdh11/12-like 1 catalyzed the conversion of 11-ketoandrostenedione into 11KT. Tissue-distribution analysis by quantitative real-time polymerase chain reaction revealed, in immature male Japanese eel, that rdh11/12-like 1 and rdh11/12-like 2 are predominantly expressed in testis and brain, while rdh11/12-like 3 is expressed ubiquitously. Moreover, we analyzed the effects of gonadotropins and 11KT on the expression of the three rdh11/12-like mRNAs in the immature testis. In vitro incubation of immature testes with various doses of recombinant Japanese eel follicle stimulating hormone, luteinizing hormone, and 11KT indicated that the expression of rdh11/12-like 1 mRNA, rdh11/12-like 2, and rdh11/12-like 3 did not change. These findings suggest that the three Rdh11/12-like proteins metabolize sex steroids. Rdh11/12-like 1 may be one of the enzymes with 17KSR activity involved in the production of 11KT in the testis.


Subject(s)
Anguilla , Vitamin A , 17-Hydroxysteroid Dehydrogenases/genetics , Alcohol Oxidoreductases , Androstenedione , Animals , Gonadal Steroid Hormones , HEK293 Cells , Humans , Male , Phylogeny , Testis
SELECTION OF CITATIONS
SEARCH DETAIL