Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
IEEE Trans Neural Netw ; 20(4): 626-37, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19273045

ABSTRACT

This paper investigates a nonparametric modular neural network (MNN) model to price the S&P-500 European call options. The modules are based on time to maturity and moneyness of the options. The option price function of interest is homogeneous of degree one with respect to the underlying index price and the strike price. When compared to an array of parametric and nonparametric models, the MNN method consistently exerts superior out-of-sample pricing performance. We conclude that modularity improves the generalization properties of standard feedforward neural network option pricing models (with and without the homogeneity hint).

2.
IEEE Trans Neural Netw ; 18(1): 193-202, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17278472

ABSTRACT

In empirical modeling, there have been two strands for pricing in the options literature, namely the parametric and nonparametric models. Often, the support for the nonparametric methods is based on a benchmark such as the Black-Scholes (BS) model with constant volatility. In this paper, we study the stochastic volatility (SV) and stochastic volatility random jump (SVJ) models as parametric benchmarks against feedforward neural network (FNN) models, a class of neural network models. Our choice for FNN models is due to their well-studied universal approximation properties of an unknown function and its partial derivatives. Since the partial derivatives of an option pricing formula are risk pricing tools, an accurate estimation of the unknown option pricing function is essential for pricing and hedging. Our findings indicate that FNN models offer themselves as robust option pricing tools, over their sophisticated parametric counterparts in predictive settings. There are two routes to explain the superiority of FNN models over the parametric models in forecast settings. These are nonnormality of return distributions and adaptive learning.


Subject(s)
Artificial Intelligence , Decision Support Techniques , Game Theory , Investments , Models, Economic , Risk Assessment/methods , Algorithms , Computer Simulation , Europe
SELECTION OF CITATIONS
SEARCH DETAIL